Atomic and Quantum Physics: An Introduction to the Fundamentals of Experiment and Theory

Author:   Hermann Haken ,  W.D. Brewer ,  Hans C. Wolf
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Softcover reprint of the original 2nd ed. 1987
ISBN:  

9783540177029


Pages:   458
Publication Date:   31 July 1987
Replaced By:   9783540563129
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $155.22 Quantity:  
Add to Cart

Share |

Atomic and Quantum Physics: An Introduction to the Fundamentals of Experiment and Theory


Add your own review!

Overview

Full Product Details

Author:   Hermann Haken ,  W.D. Brewer ,  Hans C. Wolf
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   Softcover reprint of the original 2nd ed. 1987
Dimensions:   Width: 20.30cm , Height: 2.50cm , Length: 25.40cm
Weight:   1.155kg
ISBN:  

9783540177029


ISBN 10:   3540177027
Pages:   458
Publication Date:   31 July 1987
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Replaced By:   9783540563129
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1. Introduction.- 1.1 Classical Physics and Quantum Mechanics.- 1.2 Short Historical Review.- 2. The Mass and Size of the Atom.- 2.1 What is an Atom?.- 2.2 Determination of the Mass.- 2.3 Methods for Determining Avogadro’s Number.- 2.3.1 Electrolysis.- 2.3.2 The Gas Constant and Boltzmann’s Constant.- 2.3.3 X-Ray Diffraction in Crystals.- 2.3.4 Determination Using Radioactive Decay.- 2.4 Determination of the Size of the Atom.- 2.4.1 Application of the Kinetic Theory of Gases.- 2.4.2 The Interaction Cross Section.- 2.4.3 Experimental Determination of Interaction Cross Sections.- 2.4.4 Determining the Atomic Size from the Covolume.- 2.4.5 Atomic Sizes from X-Ray Diffraction Measurements on Crystals.- 2.4.6 Can Individual Atoms Be Seen?.- Problems.- 3. Isotopes.- 3.1 The Periodic System of the Elements.- 3.2 Mass Spectroscopy.- 3.2.1 Parabola Method.- 3.2.2 Improved Mass Spectrometers.- 3.2.3 Results of Mass Spectrometry.- 3.2.4 Modern Applications of the Mass Spectrometer.- 3.2.5 Isotope Separation.- Problems.- 4. The Nucleus of the Atom.- 4.1 Passage of Electrons Through Matter.- 4.2 Passage of Alpha Particles Through Matter (Rutherford Scattering).- 4.2.1 Some Properties of Alpha Particles.- 4.2.2 Scattering of Alpha Particles by a Foil.- 4.2.3 Derivation of the Rutherford Scattering Formula.- 4.2.4 Experimental Results.- 4.2.5 What is Meant by Nuclear Radius?.- Problems.- 5. The Photon.- 5.1 Wave Character of Light.- 5.2 Thermal Radiation.- 5.2.1 Spectral Distribution of Black Body Radiation.- 5.2.2 Planck’s Radiation Formula.- 5.2.3 Einstein’s Derivation of Planck’s Formula.- 5.3 The Photoelectric Effect.- 5.4 The Compton Effect.- 5.4.1 Experiments.- 5.4.2 Derivation of the Compton Shift.- Problems.- 6. The Electron.- 6.1 Production of Free Electrons.- 6.2 Size of the Electron.- 6.3 The Charge of the Electron.- 6.4 The Specific Charge e/m of the Electron.- 6.5 Wave Character of Electrons.- Problems.- 7. Some Basic Properties of Matter Waves.- 7.1 Wave Packets.- 7.2 Probabilistic Interpretation.- 7.3 The Heisenberg Uncertainty Relation.- 7.4 The Energy-Time Uncertainty Relation.- 7.5 Some Consequences of the Uncertainty Relations for Bound States.- Problems.- 8. Bohr’s Model of the Hydrogen Atom.- 8.1 Basic Principles of Spectroscopy.- 8.2 The Optical Spectrum of the Hydrogen Atom.- 8.3 Bohr’s Postulates.- 8.4 Some Quantitative Conclusions.- 8.5 Motion of the Nucleus.- 8.6 Spectra of Hydrogen-like Atoms.- 8.7 Muonic Atoms.- 8.8 Excitation of Quantum Jumps by Collisions.- 8.9 Sommerfeld’s Extension of the Bohr Model and the Experimental Justification of a Second Quantum Number.- 8.10 Lifting of Orbital Degeneracy by the Relativistic Mass Change.- 8.11 Limits of the Bohr-Sommerfeld Theory. The Correspondence Principle.- 8.12 Rydberg Atoms.- Problems.- 9. The Mathematical Framework of Quantum Theory.- 9.1 The Particle in a Box.- 9.2 The Schrödinger Equation.- 9.3 The Conceptual Basis of Quantum Theory.- 9.3.1 Observations, Values of Measurements and Operators.- 9.3.2 Momentum Measurement and Momentum Probability.- 9.3.3 Average Values and Expectation Values.- 9.3.4 Operators and Expectation Values.- 9.3.5 Equations for Determining the Wavefunction.- 9.3.6 Simultaneous Observability and Commutation Relations.- 9.4 The Quantum Mechanical Oscillator.- Problems.- 10. Quantum Mechanics of the Hydrogen Atom.- 10.1 Motion in a Central Field.- 10.2 Angular Momentum Eigenfunctions.- 10.3 The Radial Wavefunctions in a Central Field.- 10.4 The Radial Wavefunctions of Hydrogen.- Problems.- 11. Lifting of the Orbital Degeneracy in the Spectra of Alkali Atoms.- 11.1 Shell Structure.- 11.2 Screening.- 11.3 The Term Diagram.- 11.4 Inner Shells.- Problems.- 12. Orbital and Spin Magnetism. Fine Structure.- 12.1 Introduction and Overview.- 12.2 Magnetic Moment of the Orbital Motion.- 12.3 Precession and Orientation in a Magnetic Field.- 12.4 Spin and Magnetic Moment of the Electron.- 12.5 Determination of the Gyromagnetic Ratio by the Einstein-de Haas Method.- 12.6 Detection of Directional Quantisation by Stern and Gerlach.- 12.7 Fine Structure and Spin-Orbit Coupling: Overview.- 12.8 Calculation of Spin-Orbit Splitting in the Bohr Model.- 12.9 Level Scheme of the Alkali Atoms.- 12.10 Fine Structure in the Hydrogen Atom.- 12.11 The Lamb Shift.- Problems.- 13. Atoms in a Magnetic Field: Experiments and Their Semiclassical Description.- 13.1 Directional Quantisation in a Magnetic Field.- 13.2 Electron Spin Resonance.- 13.3 The Zeeman Effect.- 13.3.1 Experiments.- 13.3.2 Explanation of the Zeeman Effect from the Standpoint of Classical Electron Theory.- 13.3.3 Description of the Ordinary Zeeman Effect by the Vector Model.- 13.3.4 The Anomalous Zeeman Effect.- 13.3.5 Magnetic Moments with Spin-Orbit Coupling.- 13.4 The Paschen-Back Effect.- 13.5 Double Resonance and Optical Pumping.- Problems.- 14. Atoms in a Magnetic Field: Quantum Mechanical Treatment.- 14.1 Quantum Theory of the Ordinary Zeeman Effect.- 14.2 Quantum Theoretical Treatment of the Electron and Proton Spins.- 14.2.1 Spin as Angular Momentum.- 14.2.2 Spin Operators, Spin Matrices and Spin Wavefunctions.- 14.2.3 The Schrödinger Equation of a Spin in a Magnetic Field.- 14.2.4 Description of Spin Precession by Expectation Values.- 14.3 Quantum Mechanical Treatment of the Anomalous Zeeman Effect with Spin-Orbit Coupling*.- 14.4 Quantum Theory of a Spin in Mutually Perpendicular Magnetic Fields, One Constant and One Time Dependent.- 14.5 The Bloch Equations.- 14.6 The Relativistic Theory of the Electron. The Dirac Equation.- Problems.- 15. Atoms in an Electric Field.- 15.1 Observations of the Stark Effect.- 15.2 Quantum Theory of the Linear and Quadratic Stark Effects.- 15.2.1 The Hamiltonian.- 15.2.2 The Quadratic Stark Effect. Perturbation Theory Without Degeneracy.- 15.2.3 The Linear Stark Effect. Perturbation Theory in the Presence of Degeneracy.- 15.3 The Interaction of a Two-Level Atom with a Coherent Radiation Field.- 15.4 Spin- and Photon Echoes.- 15.5 A Glance at Quantum Electrodynamics.- 15.5.1 Field Quantization.- 15.5.2 Mass Renormalization and Lamb Shift.- Problems.- 16. General Laws of Optical Transitions.- 16.1 Symmetries and Selection Rules.- 16.1.1 Optical Matrix Elements.- 16.1.2 Examples of the Symmetry Behaviour of Wavefunctions.- 16.1.3 Selection Rules.- 16.1.4 Selection Rules and Multipole Radiation.- 16.2 Linewidths and Lineshapes.- 17. Many-Electron Atoms.- 17.1 The Spectrum of the Helium Atom.- 17.2 Electron Repulsion and the Pauli Principle.- 17.3 Angular Momentum Coupling.- 17.3.1 Coupling Mechanism.- 17.3.2 LS Coupling (Russell-Saunders Coupling).- 17.3.3 jj Coupling.- 17.4 Magnetic Moments of Many-Electron Atoms.- 17.5 Multiple Excitations.- Problems.- 18. X-Ray Spectra, Internal Shells.- 18.1 Introductory Remarks.- 18.2 X-Radiation from Outer Shells.- 18.3 X-Ray Bremsstrahlung Spectra.- 18.4 Emission Line Spectra: Characteristic Radiation.- 18.5 Fine Structure of the X-Ray Spectra.- 18.6 Absorption Spectra.- 18.7 The Auger Effect (Inner Photoeffect).- 18.8 Photoelectron Spectroscopy (XPS), ESCA.- Problems.- 19. Structure of the Periodic System. Ground States of the Elements.- 19.1 Periodic System and Shell Structure.- 19.2 Ground States of Atoms.- 19.3 Excited States and Complete Term Scheme.- 19.4 The Many-Electron Problem. Hartree-Fock Method.- 19.4.1 The Two-Electron Problem.- 19.4.2 Many Electrons Without Mutual Interactions.- 19.4.3 Coulomb Interaction of Electrons. Hartree and Hartree-Fock Methods.- Problems.- 20. Nuclear Spin, Hyperfine Structure.- 20.1 Influence of the Atomic Nucleus on Atomic Spectra.- 20.2 Spins and Magnetic Moments of Atomic Nuclei.- 20.3 The Hyperfine Interaction.- 20.4 Hyperfine Structure in the Ground States of the Hydrogen and Sodium Atoms.- 20.5 Hyperfine Structure in an External Magnetic Field, Electron Spin Resonance.- 20.6 Direct Measurements of Nuclear Spins and Magnetic Moments, Nuclear Magnetic Resonance.- 20.7 Applications of Nuclear Magnetic Resonance.- 20.8 The Nuclear Electric Quadrupole Moment.- Problems.- 21. The Laser.- 21.1 Some Basic Concepts for the Laser.- 21.2 Rate Equations and Lasing Conditions.- 21.3 Amplitude and Phase of Laser Light.- Problems.- 22. Modern Methods of Optical Spectroscopy.- 22.1 Classical Methods.- 22.2 Quantum Beats.- 22.3 Doppler-free Saturation Spectroscopy.- 22.4 Doppler-free Two-Photon Absorption.- 22.5 Level-Crossing Spectroscopy and the Hanle Effect.- 23. Fundamentals of the Quantum Theory of Chemical Bonding.- 23.1 Introductory Remarks.- 23.2 The Hydrogen-Molecule Ion H2+.- 23.3 The Tunnel Effect.- 23.4 The Hydrogen Molecule H2.- 23.5 Covalent-Ionic Resonance.- 23.6 The Hund-Mulliken-Bloch Theory of Bonding in Hydrogen.- 23.7 Hybridisation.- 23.8 The ? Electrons of Benzene, C6H6.- Problems.- A. The Dirac Delta Function and the Normalisation of the Wavefunction of a Free Particle in Unbounded Space.- B. Some Properties of the Hamiltonian Operator, Its Eigenfunctions and Its Eigenvalues.- Bibliography of Supplementary and Specialised Literature.- Fundamental Constants of Atomic Physics (Inside Front Cover).- Energy Conversion Table (Inside Back Cover).

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List