Applications of Modern Physics in Medicine

Author:   Mark Strikman ,  Kevork Spartalian ,  Milton W. Cole
Publisher:   Princeton University Press
ISBN:  

9780691125862


Pages:   296
Publication Date:   21 December 2014
Format:   Hardback
Availability:   Temporarily unavailable   Availability explained
The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you.

Our Price $140.00 Quantity:  
Add to Cart

Share |

Applications of Modern Physics in Medicine


Add your own review!

Overview

Full Product Details

Author:   Mark Strikman ,  Kevork Spartalian ,  Milton W. Cole
Publisher:   Princeton University Press
Imprint:   Princeton University Press
Dimensions:   Width: 17.80cm , Height: 2.30cm , Length: 25.40cm
Weight:   0.765kg
ISBN:  

9780691125862


ISBN 10:   0691125864
Pages:   296
Publication Date:   21 December 2014
Audience:   College/higher education ,  Professional and scholarly ,  Tertiary & Higher Education ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Temporarily unavailable   Availability explained
The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you.
Language:   English

Table of Contents

Preface and Guide to Using This Book xi Technical Abbreviations xv Timeline of Seminal Discoveries in Modern Physics xvii Timeline of Discoveries and Inventions in Modern Medical Physics xix Chapter 1 Introduction 1.1 Overview 1 1.2 The Meaning of the Term Modern Physics 5 1.3 Mortality 6 1.4 How to Use This Book 7 Exercises 8 Chapter 2 When You Visit Your Doctor: The Physics of the Vital Signs 2.1 Introduction 10 2.2 Stethoscope 11 2.3 Sphygmomanometer and Blood Pressure 12 2.4 Electrocardiogram 15 2.5 Physics and Physiology of Diet, Exercise, and Weight 17 Exercises 21 Chapter 3 Particles, Waves, and the Laws that Govern Them 3.1 What Is Modern Physics? 22 3.2 Light: Particle or Wave? 25 3.3 Atoms 30 3.4 Lasers 41 3.5 Relativity 45 3.6 Nuclei 53 3.7 X-Rays and Radioactivity 63 Exercises 80 Chapter 4 Photon and Charged-Particle Interactions with a Medium 4.1 Overview 84 4.2 Mean Free Path and Cross Sections 85 4.3 Photon Interactions 87 4.4 Electron and Positron Interactions 98 Exercises 104 Chapter 5 Interactions of Radiation with Living Tissue 5.1 Introduction 107 5.2 Cell Death Due to DNA Radiation Damage 108 5.3 Dependence of Cell Survival on the Dose 112 5.4 Low Doses of Radiation 116 5.5 Radiation Dose versus Altitude 119 Exercises 121 Chapter 6 Diagnostic Applications I: Photons and Radionuclides 6.1 Overview 122 6.2 Photons 122 6.3 X-Rays and Gamma Rays 133 6.4 Radionuclides 156 6.5 Novel Ideas for Nuclear Imaging 166 Exercises 168 Chapter 7 Diagnostic Applications II: MRI and Ultrasound 7.1 Overview 171 7.2 Magnetic Resonance Imaging (MRI) 172 7.3 Ultrasound 199 7.4 Multimodal Imaging 220 Exercises 224 Chapter 8 Applications in Treatment 8.1 Overview 226 8.2 Treatment with Radiation 226 8.3 Treatment with Particles 233 8.4 Treatment with Ultrasound 239 8.5 Treatment with Microwaves 244 8.6 Treatment with Lasers 244 Exercises 246 Appendix A Constants, Powers of 10, and Conversions Mentioned in the Text Fundamental Constants 247 Powers of 10 and Their Prefixes 247 Conversion Factors and Equations 248 Appendix B Mortality Modeling 251 Appendix C Evaluation of the Sound Field from One Transducer Far-field (Fraunhofer) Region 255 Near-field (Fresnel) Region 257 Notes 261 Index 267

Reviews

Bridging the gap between the fundamental concepts of modern physics and medical technology in modern medicine, this book encompasses large numbers of topics from X-rays and gamma rays to lasers, MRI, ultrasound, and therapeutic applications of modern physics technologies. It will serve as a good introductory text to students in biomedical engineering, medical physics, health physics, and biophysics. -Terry T. Yoshizumi, Duke University School of Medicine With a refreshing and accessible style, this textbook grounds medical physics in familiar physical principles, making it useful for undergraduate physics teaching. This book will have a place in a wide range of biomedical science courses and medical physics undergraduate modules, and as supplementary reading for medical doctors, radiographers, and other health professionals. -Mike Partridge, Gray Institute for Radiation Oncology and Biology, University of Oxford Applications of Modern Physics in Medicine fills an important need: it explains the physics principals behind commonly used medical diagnostic and therapeutic procedures to scientists, engineers, and technicians working in the field. The necessary basic physics is discussed clearly and simply in early chapters and then used effectively and convincingly in later chapters covering medical applications. This lovely book should lead to the creation of new physics courses all over the world. -Gerald Miller, University of Washington


Bridging the gap between the fundamental concepts of modern physics and medical technology in modern medicine, this book encompasses large numbers of topics from X-rays and gamma rays to lasers, MRI, ultrasound, and therapeutic applications of modern physics technologies. It will serve as a good introductory text to students in biomedical engineering, medical physics, health physics, and biophysics. --Terry T. Yoshizumi, Duke University School of Medicine Applications of Modern Physics in Medicine fills an important need: it explains the physics principals behind commonly used medical diagnostic and therapeutic procedures to scientists, engineers, and technicians working in the field. The necessary basic physics is discussed clearly and simply in early chapters and then used effectively and convincingly in later chapters covering medical applications. This lovely book should lead to the creation of new physics courses all over the world. --Gerald Miller, University of Washington With a refreshing and accessible style, this textbook grounds medical physics in familiar physical principles, making it useful for undergraduate physics teaching. This book will have a place in a wide range of biomedical science courses and medical physics undergraduate modules, and as supplementary reading for medical doctors, radiographers, and other health professionals. --Mike Partridge, Gray Institute for Radiation Oncology and Biology, University of Oxford


Bridging the gap between the fundamental concepts of modern physics and medical technology in modern medicine, this book encompasses large numbers of topics from X-rays and gamma rays to lasers, MRI, ultrasound, and therapeutic applications of modern physics technologies. It will serve as a good introductory text to students in biomedical engineering, medical physics, health physics, and biophysics. --Terry T. Yoshizumi, Duke University School of Medicine With a refreshing and accessible style, this textbook grounds medical physics in familiar physical principles, making it useful for undergraduate physics teaching. This book will have a place in a wide range of biomedical science courses and medical physics undergraduate modules, and as supplementary reading for medical doctors, radiographers, and other health professionals. --Mike Partridge, Gray Institute for Radiation Oncology and Biology, University of Oxford Applications of Modern Physics in Medicine fills an important need: it explains the physics principals behind commonly used medical diagnostic and therapeutic procedures to scientists, engineers, and technicians working in the field. The necessary basic physics is discussed clearly and simply in early chapters and then used effectively and convincingly in later chapters covering medical applications. This lovely book should lead to the creation of new physics courses all over the world. --Gerald Miller, University of Washington


Author Information

Mark Strikman is Distinguished Professor of Physics at Pennsylvania State University. Kevork Spartalian is Associate Professor of Physics at the University of Vermont. Milton W. Cole is Distinguished Professor of Physics at Pennsylvania State University.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

wl

Shopping Cart
Your cart is empty
Shopping cart
Mailing List