|
|
|||
|
||||
OverviewThis monograph introduces a unified framework for analyzing and comparing the asymptotic growth of number-theoretic functions through the novel notions of degree and logexponential degree. Extending the asymptotic calculus shaped by du Bois-Reymond, Landau, and Hardy — rooted in notations such as O, o, and ∼ — it provides a formal algebraic language for comparing growth rates, interpreting numerical evidence, and connecting longstanding problems, including the Riemann hypothesis. The new degree formalism incorporates Hardy's logarithmico-exponential functions, built from id, exp, and log using the operations of addition, multiplication, division, and composition, as benchmarks for comparison. The monograph develops foundational results about the structure and algebra of the degree formalism, including its relation to Karamata theory, Hardy fields, transseries, and asymptotic differential algebra. While not offering proofs of major conjectures, it proposes a new way of establishing interdependencies among error terms. Applications to summatory functions, prime gaps, the Riemann zeta function, and Diophantine approximation demonstrate the framework's reach and utility. These applications reduce error terms in analytic number theory to core set of primitives, including the function π(x) — li(x), whose degree equals ½ if and only if the Riemann hypothesis holds. Full Product DetailsAuthor: Jesse Elliott (California State University, Channel Islands, Usa)Publisher: World Scientific Publishing Co Pte Ltd Imprint: World Scientific Publishing Co Pte Ltd Volume: 13 ISBN: 9789811280535ISBN 10: 9811280533 Pages: 804 Publication Date: 28 October 2025 Audience: College/higher education , Professional and scholarly , Tertiary & Higher Education , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |
||||