Acute Neuronal Injury: The Role of Excitotoxic Programmed Cell Death Mechanisms

Author:   Denson G. Fujikawa
Publisher:   Springer-Verlag New York Inc.
Edition:   2010 ed.
ISBN:  

9781489982858


Pages:   306
Publication Date:   05 September 2014
Replaced By:   9783319774947
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $657.36 Quantity:  
Add to Cart

Share |

Acute Neuronal Injury: The Role of Excitotoxic Programmed Cell Death Mechanisms


Add your own review!

Overview

Denson G. Fujikawa 2+ In the early 1980s it was recognized that excessive Ca influx, presumably through 2+ 2+ voltage-gated Ca channels, with a resultant increase in intracellular Ca , was associated with neuronal death from cerebral ischemia, hypoglycemia, and status epilepticus (Siejo 1981). Calcium activation of phospholipases, with arachidonic acid accumulation and its oxidation, generating free radicals, was thought to be a potential mechanism by which neuronal damage occurs. In cerebral ischemia and 2+ hypoglycemia, energy failure was thought to be the reason for excessive Ca influx, whereas in status epilepticus it was thought that repetitive depolarizations were responsible (Siejo 1981). Meanwhile, John Olney found that monosodium glutamate, the food additive, when given to immature rats, was associated with neuronal degeneration in the arcuate nucleus of the hypothalamus, which lacks a blood-brain barrier (Olney 1969). He followed up this observation with a series of observations in the 1970s that administration of kainic acid, which we now know activates the GluR5-7 subtypes of glutamate receptor, and other glutamate analogues, caused not only post-synaptic cytoplasmic swelling, but also dark-cell degeneration of neurons, when viewed by electron microscopy (Olney 1971; Olney et al. 1974).

Full Product Details

Author:   Denson G. Fujikawa
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   2010 ed.
Dimensions:   Width: 15.50cm , Height: 1.70cm , Length: 23.50cm
Weight:   0.492kg
ISBN:  

9781489982858


ISBN 10:   148998285
Pages:   306
Publication Date:   05 September 2014
Audience:   Professional and scholarly ,  Professional & Vocational
Replaced By:   9783319774947
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Caspase-Independent Programmed Cell Death: General Considerations.- Caspase-Independent Cell Death Mechanisms in Simple Animal Models.- Programmed Necrosis: A “New” Cell Death Outcome for Injured Adult Neurons?.- Age-Dependence of Neuronal Apoptosis and of Caspase Activation.- Excitotoxic Programmed Cell Death Involves Caspase-Independent Mechanisms.- Focal Cerebral Ischemia.- Significant Role of Apoptosis-Inducing Factor (AIF) for Brain Damage Following Focal Cerebral Ischemia.- The Role of Poly(ADP-Ribose) Polymerase-1 (PARP-1) Activation in Focal Cerebral Ischemia.- Transient Global Ischemia.- Transient Global Cerebral Ischemia Produces Morphologically Necrotic, Not Apoptotic Neurons.- Apoptosis-Inducing Factor Translocation to Nuclei After Transient Global Ischemia.- Role of µ-Calpain I and Lysosomal Cathepsins in Hippocampal Neuronal Necrosis After Transient Global Ischemia in Primates.- Traumatic Central Nervous System (CNS) Injury.- Mitochondrial Damage in Traumatic CNS Injury.- Programmed Neuronal Cell Death Mechanisms in CNS Injury.- Hypoglycemic Neuronal Death.- Hypoglycemic Brain Damage.- Hypoglycemic Neuronal Death.- Seizure-Induced Neuronal Death.- Tumor Suppressor p53: A Multifunctional Protein Implicated in Seizure-Induced Neuronal Cell Death.- DNA Damage and Repair in the Brain: Implications for Seizure-Induced Neuronal Injury, Endangerment, and Neuroprotection.- Activation of Caspase-Independent Programmed Pathways in Seizure-Induced Neuronal Necrosis.

Reviews

“This is an outstanding book concerning the molecular and cellular mechanisms of trauma and ischemia in the mammalian brain. … I recommend his book to neurophysiologists, neurologists, and neurosurgeons.” (Joseph J. Grenier, Amazon.com, September, 2015)


This is an outstanding book concerning the molecular and cellular mechanisms of trauma and ischemia in the mammalian brain. I recommend his book to neurophysiologists, neurologists, and neurosurgeons. (Joseph J. Grenier, Amazon.com, September, 2015)


Author Information

Dr. Denson Fujikawa is an Adjunct Professor of Neurology at the David Geffen School of Medicine at UCLA, a member of the Brain Research Institute at UCLA and a Staff Neurologist at the Department of Veterans Affairs Greater Los Angeles Healthcare System. His interest in mechanisms of nerve cell death in the brain began during a two-year epilepsy research fellowship with Dr. Claude Wasterlain, from 1981 to 1983. He is a Fellow of the American Academy of Neurology and is a member of the American Epilepsy Society, American Neurological Association, International Society for Cerebral Blood Flow and Metabolism and the Society for Neuroscience.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List