2D Materials: Properties and Devices

Author:   Phaedon Avouris (IBM T. J. Watson Research Center, New York) ,  Tony F. Heinz (Stanford University, California) ,  Tony Low (University of Minnesota)
Publisher:   Cambridge University Press
ISBN:  

9781107163713


Pages:   523
Publication Date:   29 June 2017
Format:   Hardback
Availability:   In stock   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $243.20 Quantity:  
Add to Cart

Share |

2D Materials: Properties and Devices


Add your own review!

Overview

Full Product Details

Author:   Phaedon Avouris (IBM T. J. Watson Research Center, New York) ,  Tony F. Heinz (Stanford University, California) ,  Tony Low (University of Minnesota)
Publisher:   Cambridge University Press
Imprint:   Cambridge University Press
Dimensions:   Width: 17.80cm , Height: 2.70cm , Length: 25.30cm
Weight:   1.170kg
ISBN:  

9781107163713


ISBN 10:   1107163714
Pages:   523
Publication Date:   29 June 2017
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   In stock   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

1. Graphene: basic properties Mikhail I. Katsnelson and Annalisa Fasolino; 2. Electrical transport in graphene: carrier scattering by impurities and phonons Jian-Hao Chen; 3. Optical properties of graphene Feng Wang and Sufei Shi; 4. Graphene mechanical properties C. DiMarco, R. Li, S. Rastogi, J. Hone and J. W. Kysar; 5. Vibrations in graphene Ado Jorio, Luiz Gustavo Cançado and Leandro M. Malard; 6. Thermal properties of graphene: from physics to applications Alexander A. Balandin; 7. Graphene plasmonics Frank Koppens, Mark B. Lundeberg, Marco Polini, Tony Low and Phaedon Avouris; 8. Electron optics with graphene p-n junctions James R. Williams; 9. Graphene electronics Chen Wang, Xidong Duan and Xiangfeng Duan; 10. Graphene: optoelectronic devices Thomas Mueller and Phaedon Avouris; 11. Graphene spintronics Aron W. Cummings, Sergio O. Valenzuela, Frank Ortmann and Stephan Roche; 12. Graphene-BN heterostructures Lei Wang, James Hone and Cory. R. Dean; 13. Controlled growth of graphene crystals by chemical vapor deposition: from solid metals to liquid metals Dechao Geng and Kian Ping Loh; 14. Electronic properties and strain engineering in semiconducting transition metal dichalcogenides Rafael Roldán and Francisco Guinea; 15. Valley-spin physics in 2D semiconducting transition metal dichalcogenides Hongyi Yu and Wang Yao; 16. Electrical transport in MoS2, a prototypical semiconducting TMDC Andras Kis; 17. Optical properties of TMD heterostructures Pasqual Rivera, Wang Yao and Xiaodong Xu; 18. TMDs - optoelectronic devices Thomas Mueller; 19. Large area synthesis Yumeng Shi and Lain-Jong Li; 20. Defects in two-dimensional materials Xiaolong Zou and Boris I. Yakobson; 21. Theoretical overview of black phosphorus Tony Low, Andrey Chaves, Wei Ji, Jesse Maassen and Traian Dumitrica; 22. Anisotropic properties of black phosphorus Yuchen Du, Zhe Luo, Han Liu, Xianfan Xu and Peide D. Ye; 23. Optical properties and optoelectronic applications of black phosphorus Andres Castellanos-Gomez and Mo Li; 24. Silicene, germanene and stanene Guy Le Lay, Eric Salomon and Thierry Angot; 25. Predictions of single-layer honeycomb structures from first-principles S. Ciraci and S. Cahangirov.

Reviews

Advance praise: 'This book, edited by the top researchers who have been working on atomically thin materials in the past decade, contains the essential contents of our current scientific understanding of this novel form of materials. The authors have compiled comprehensive and contemporary reviews on various topics ranging from fundamental science to engineering applications, providing an excellent textbook for students as well as references for experts in the research field.' Philip Kim, Harvard University, Massachusetts Advance praise: 'This edited volume consists of 25 topical chapters contributed by scientists active in the growing field of 2D semiconductors, who summarize the most salient features of these intriguing materials. Contributions are grouped into three parts dedicated to graphene, transition metal dichalcogenides, and elemental group V layered semiconductors including phosphorene. Covered are the most actively researched topics synthesis, stability, thermal, and electronic properties including transport, optics, optoelectronics and spintronics, phonon structure, and mechanical properties of few-layer systems including heterostructures, as probed by state-of-the-art experimental and theoretical techniques. While emphasis is placed on the rigorous scientific representation of knowledge acquired to date, the contributors also offer a refreshing insight into potential applications of this new class of materials.' David Tomanek, Michigan State University Advance praise: 'The field of 2D materials, which started with graphene, now includes dozens of one-atom thick crystals. Many of them demonstrate properties end effects which are equally exciting as those found for the famous ancestor. And, judging from the recent progress, the field will be developing very fast for many years ahead. This book, written by scientists who are the leaders in their fields, is the most comprehensive and up-to-date attempt to review this fast-developing subject. Starting with an in-depth summary on graphene, it moves to other 2D crystals, such as transition metal dichalcogenides, black phosphorous and others, providing probably the most complete reference on the topic at the moment.' Kostya Novoselov, University of Manchester


'This book, edited by the top researchers who have been working on atomically thin materials in the past decade, contains the essential contents of our current scientific understanding of this novel form of materials. The authors have compiled comprehensive and contemporary reviews on various topics ranging from fundamental science to engineering applications, providing an excellent textbook for students as well as references for experts in the research field.' Philip Kim, Harvard University, Massachusetts 'This edited volume consists of 25 topical chapters contributed by scientists active in the growing field of 2D semiconductors, who summarize the most salient features of these intriguing materials. Contributions are grouped into three parts dedicated to graphene, transition metal dichalcogenides, and elemental group V layered semiconductors including phosphorene. Covered are the most actively researched topics synthesis, stability, thermal, and electronic properties including transport, optics, optoelectronics and spintronics, phonon structure, and mechanical properties of few-layer systems including heterostructures, as probed by state-of-the-art experimental and theoretical techniques. While emphasis is placed on the rigorous scientific representation of knowledge acquired to date, the contributors also offer a refreshing insight into potential applications of this new class of materials.' David Tomanek, Michigan State University 'The field of 2D materials, which started with graphene, now includes dozens of one-atom thick crystals. Many of them demonstrate properties end effects which are equally exciting as those found for the famous ancestor. And, judging from the recent progress, the field will be developing very fast for many years ahead. This book, written by scientists who are the leaders in their fields, is the most comprehensive and up-to-date attempt to review this fast-developing subject. Starting with an in-depth summary on graphene, it moves to other 2D crystals, such as transition metal dichalcogenides, black phosphorous and others, providing probably the most complete reference on the topic at the moment.' Kostya Novoselov, University of Manchester


Advance praise: 'This book, edited by the top researchers who have been working on atomically thin materials in the past decade, contains the essential contents of our current scientific understanding of this novel form of materials. The authors have compiled comprehensive and contemporary reviews on various topics ranging from fundamental science to engineering applications, providing an excellent textbook for students as well as references for experts in the research field.' Philip Kim, Harvard University, Massachusetts Advance praise: 'This edited volume consists of 25 topical chapters contributed by scientists active in the growing field of 2D semiconductors, who summarize the most salient features of these intriguing materials. Contributions are grouped into three parts dedicated to graphene, transition metal dichalcogenides, and elemental group V layered semiconductors including phosphorene. Covered are the most actively researched topics synthesis, stability, thermal, and electronic properties including transport, optics, optoelectronics and spintronics, phonon structure, and mechanical properties of few-layer systems including heterostructures, as probed by state-of-the-art experimental and theoretical techniques. While emphasis is placed on the rigorous scientific representation of knowledge acquired to date, the contributors also offer a refreshing insight into potential applications of this new class of materials.' David Tomanek, Michigan State University Advance praise: 'The field of 2D materials, which started with graphene, now includes dozens of one-atom thick crystals. Many of them demonstrate properties end effects which are equally exciting as those found for the famous ancestor. And, judging from the recent progress, the field will be developing very fast for many years ahead. This book, written by scientists who are the leaders in their fields, is the most comprehensive and up-to-date attempt to review this fast-developing subject. Starting with an in-depth summary on graphene, it moves to other 2D crystals, such as transition metal dichalcogenides, black phosphorous and others, providing probably the most complete reference on the topic at the moment.' Kostya Novoselov, University of Manchester


Author Information

Phaedon Avouris is an IBM Fellow Emeritus. He is a member of the National Academy of Sciences, and a Fellow of the American Academy of Arts and Sciences, the American Physical Society, the Institute of Physics, the Institute of Electrical and Electronics Engineers (IEEE), the Materials Research Society, and the American Association for the Advancement of Science. Tony F. Heinz is a Professor of Applied Physics and Photon Science at Stanford University, California and the SLAC National Accelerator Laboratory. He previously worked at Columbia University, New York and IBM Research, USA. Tony Low is Assistant Professor of Electrical and Computer Engineering at the University of Minnesota. He previously worked at Yale University, Connecticut, Columbia University, New York, and the IBM T. J. Watson Research Center, New York.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List