|
|
|||
|
||||
OverviewThe book first explains the main properties of analytic functions in order to use them in the study of various problems in p-adic value distribution. Certain properties of p-adic transcendental numbers are examined such as order and type of transcendence, with problems on p-adic exponentials. Lazard's problem for analytic functions inside a disk is explained. P-adic meromorphics are studied. Sets of range uniqueness in a p-adic field are examined. The ultrametric Corona problem is studied. Injective analytic elements are characterized. The p-adic Nevanlinna theory is described and many applications are given: p-adic Hayman conjecture, Picard's values for derivatives, small functions, branched values, growth of entire functions, problems of uniqueness, URSCM and URSIM, functions of uniqueness, sharing value problems, Nevanlinna theory in characteristic p>0, p-adic Yosida's equation. Full Product DetailsAuthor: Alain Escassut (Univ Clermont Auvergne, France)Publisher: World Scientific Publishing Co Pte Ltd Imprint: World Scientific Publishing Co Pte Ltd Dimensions: Width: 17.30cm , Height: 3.30cm , Length: 24.40cm Weight: 1.089kg ISBN: 9789814730105ISBN 10: 9814730106 Pages: 560 Publication Date: 28 January 2016 Audience: College/higher education , Professional and scholarly , Tertiary & Higher Education , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |