Theory of Slow Atomic Collisions

Author:   E.E. Nikitin ,  S.Y. Umanskii
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Softcover reprint of the original 1st ed. 1984
Volume:   30
ISBN:  

9783642820472


Pages:   434
Publication Date:   22 December 2011
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $290.37 Quantity:  
Add to Cart

Share |

Theory of Slow Atomic Collisions


Add your own review!

Overview

The theory of atom-molecule collisions is one of the basic fields in chemi­ cal physics. Its most challenging part - the dynamics of chemical reactions - is as yet unresolved, but is developing very quickly. It is here a great help to have an analysis of those parts of collision theory which are already complete, a good example being the theory of atomic collisions in process­ es specific to chemical physics. It has long been observed that many notions of this theory can also be applied successfully to reactive and unreactive molecular collisions. More­ over, atomic collisions often represent a touchstone in testing approaches proposed for the solution of more complicated problems. Research on the theory of slow atomic collisions carried out at the Moscow Institute of Chemical Physics has been based on just these ideas. A general viewpoint concerning the setting up and representation of the theory came out of these studies, and appeared to be useful in studying complicated systems as well. It underlies the representation of the theory of slow atomic colli­ sions in this book.

Full Product Details

Author:   E.E. Nikitin ,  S.Y. Umanskii
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   Softcover reprint of the original 1st ed. 1984
Volume:   30
Dimensions:   Width: 15.50cm , Height: 2.30cm , Length: 23.50cm
Weight:   0.680kg
ISBN:  

9783642820472


ISBN 10:   3642820476
Pages:   434
Publication Date:   22 December 2011
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1. Introduction.- 2. General Formulation of Scattering Problem Under Quasi-Classical Conditions.- 2.1 Scattering Amplitudes and Cross Sections.- 2.2 Scattering Equations.- 2.3 Collisions of Two Many-Electron Atoms.- 2.4 Integral Cross Sections for Isotropic Collisions.- 3. Diatomic Electronic States.- 3.1 Quantum Numbers and Wave Functions of a Free Atom..- 3.2 Quantum Numbers and Wave Functions of Diatoms.- 3.3 Adiabatic States, Diabatic States, and Correlation Diagrams.- 3.4 Coupling Between Electronic States. Selection Rules.- 4. Approximate Calculation of the Electronic States of Diatoms.- 4.1 Atomic Potential and Atomic Orbitals.- 4.2 Diatomic Interactions at Large Distances and the Heitler-London Approximation.- 4.3 Pseudopotential Method for Interatomic Interactions.- 4.4 Short-Range Atomic Interactions.- 4.5 Coupling Between Electronic States.- 5. Elastic Scattering.- 5.1 Quasi-Classical Scattering Amplitude.- 5.2 Quasi-Classical Scattering Matrix.- 5.3 Classical Scattering.- 5.4 Integral Cross Sections.- 5.5 Differential Cross Sections.- 6. Approximate Calculation of a Multichannel Quasi-Classical Scattering Matrix.- 6.1 Common-Trajectory Approach.- 6.2 Matching Approach.- 6.3 Perturbation Approach.- 7. Two-State Scattering Problem.- 7.1 The Two-State Model. Adiabatic and Diabatic Representations.- 7.2 Construction of the Two-State Quasi-Classical S Matrix by the Matching Method.- 7.3 Two-State Semiclassical Models.- 7.4 Differential Cross Sections and Deflection Functions.- 8. The Linear Two-State Landau-Zener Model.- 8.1 Formulation of the Model.- 8.2 Nonadiabatic Transitions Far from the Turning Point. Landau-Zener-Stueckelberg Solution.- 8.3 Nonadiabatic Transitions Near the Turning Point.- 8.4 Validity of Linear Model and of Analytical Expressions for Transition Probabilities.- 8.5 Cross Sections for the Linear Model.- 9. Nonlinear Two-State Models of Nonadiabatic Coupling.- 9.1 Exponential Model.- 9.2 Linear-Exponential Model.- 9.3 Other Nonlinear Models.- 10. Multistate Models of Nonadiabatic Coupling.- 10.1 Transitions Between Degenerate States.- 10.2 Transitions Between Highly Excited States.- 10.3 Generalizations of the Linear Model.- 11. Case Study — Intramultiplet Mixing and Depolarization of Alkalis in Collisions with Noble Gases.- 11.1 Formulation of the M* — X Scattering Problem.- 11.2 The Scattering Matrix.- 11.3 Transition Probabilities and Cross Sections for Isotropic Collisions.- A. Quantum Theory of Angular Momentum.- A. l Rotation Matrices and Spherical Functions.- A.2 Coupling of Angular Momenta, Clebsch-Gordan.- A.3 Matrix Elements of the Irreducible Tensor.- Operators.- References.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

lgn

al

Shopping Cart
Your cart is empty
Shopping cart
Mailing List