|
|
|||
|
||||
OverviewHardy's Z-function, related to the Riemann zeta-function (s), was originally utilised by G. H. Hardy to show that (s) has infinitely many zeros of the form +it. It is now amongst the most important functions of analytic number theory, and the Riemann hypothesis, that all complex zeros lie on the line +it, is perhaps one of the best known and most important open problems in mathematics. Today Hardy's function has many applications; among others it is used for extensive calculations regarding the zeros of (s). This comprehensive account covers many aspects of Z(t), including the distribution of its zeros, Gram points, moments and Mellin transforms. It features an extensive bibliography and end-of-chapter notes containing comments, remarks and references. The book also provides many open problems to stimulate readers interested in further research. Full Product DetailsAuthor: Professor Aleksandar IVI (Univerzitet u Beogradu, Serbia)Publisher: Cambridge University Press Imprint: Cambridge University Press ISBN: 9781283714761ISBN 10: 1283714760 Pages: 266 Publication Date: 01 January 2012 Audience: General/trade , General Format: Undefined Publisher's Status: Active Availability: In stock We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |