The Theory of Classical Valuations

Author:   Paulo Ribenboim
Publisher:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of the original 1st ed. 1999
ISBN:  

9781461268147


Pages:   403
Publication Date:   04 October 2012
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $290.37 Quantity:  
Add to Cart

Share |

The Theory of Classical Valuations


Add your own review!

Overview

"In his studies of cyclotomic fields, in view of establishing his monumental theorem about Fermat's last theorem, Kummer introduced ""local"" methods. They are concerned with divisibility of ""ideal numbers"" of cyclotomic fields by lambda = 1 - psi where psi is a primitive p-th root of 1 (p any odd prime). Henssel developed Kummer's ideas, constructed the field of p-adic numbers and proved the fundamental theorem known today. Kurschak formally introduced the concept of a valuation of a field, as being real valued functions on the set of non-zero elements of the field satisfying certain properties, like the p-adic valuations. Ostrowski, Hasse, Schmidt and others developed this theory and collectively, these topics form the primary focus of this book."

Full Product Details

Author:   Paulo Ribenboim
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of the original 1st ed. 1999
Dimensions:   Width: 15.50cm , Height: 2.10cm , Length: 23.50cm
Weight:   0.640kg
ISBN:  

9781461268147


ISBN 10:   1461268141
Pages:   403
Publication Date:   04 October 2012
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1 Absolute Values of Fields.- 1.1. First Examples.- 1.2. Generalities About Absolute Values of a Field.- 1.3. Absolute Values of Q.- 1.4. The Independence of Absolute Values.- 1.5. The Topology of Valued Fields.- 1.6. Archimedean Absolute Values.- 1.7. Topological Characterizations of Valued Fields.- 2 Valuations of a Field.- 2.1. Generalities About Valuations of a Field.- 2.2. Complete Valued Fields and Qp.- 3 Polynomials and Henselian Valued Fields.- 3.1. Polynomials over Valued Fields.- 3.2. Henselian Valued Fields.- 4 Extensions of Valuations.- 4.1. Existence of Extensions and General Results.- 4.2. The Set of Extensions of a Valuation.- 5 Uniqueness of Extensions of Valuations and Poly-Complete Fields.- 5.1. Uniqueness of Extensions.- 5.2. Poly-Complete Fields.- 6 Extensions of Valuations: Numerical Relations.- 6.1. Numerical Relations for Valuations with Unique Extension.- 6.2. Numerical Relations in the General Case.- 6.3. Some Interesting Examples.- 6.4. Appendix on p-Groups.- 7 Power Series and the Structure of Complete Valued Fields.- 7.1. Power Series.- 7.2. Structure of Complete Discrete Valued Fields.- 8 Decomposition and Inertia Theory.- 8.1. Decomposition Theory.- 8.2. Inertia Theory.- 9 Ramification Theory.- 9.1. Lower Ramification Theory.- 9.2. Higher Ramification.- 10 Valuation Characterizations of Dedekind Domains.- 10.1. Valuation Properties of the Rings of Algebraic Integers.- 10.2. Characterizations of Dedekind Domains.- 10.3. Characterizations of Valuation Domains.- 11 Galois Groups of Algebraic Extensions of Infinite Degree.- 11.1. Galois Extensions of Infinite Degree.- 11.2. The Abelian Closure of Q.- 12 Ideals, Valuations, and Divisors in Algebraic Extensions of Infinite Degree over Q.- 12.1. Ideals.- 12.2. Valuations, Dedekind Domains, and Examples.- 12.3. Divisors of Algebraic Number Fields of Infinite Degree.- 13 A Glimpse of Krull Valuations.- 13.1. Generalities.- 13.2. Integrally Closed Domains.- 13.3. Suggestions for Further Study.- Appendix Commutative Fields and Characters of Finite Abelian Groups.- A.1. Algebraic Elements.- A.2. Algebraic Elements, Algebraically Closed Fields.- A.3. Algebraic Number Fields.- A.4. Characteristic and Prime Fields.- A.5. Normal Extensions and Splitting Fields.- A.6. Separable Extensions.- A.7. Galois Extensions.- A.8. Roots of Unity.- A.9. Finite Fields.- A.10. Trace and Norm of Elements.- A.11. The Discriminant.- A.12. Discriminant and Resultant of Polynomials.- A.13. Inseparable Extensions.- A.14. Perfect Fields.- A.15. The Theorem of Steinitz.- A.16. Orderable Fields.- A.17. The Theorem of Artin.- A.18. Characters of Finite Abelian Groups.

Reviews

It is well written, encyclopedic, and authoritative and probably belongs on the shelf of any commutative algebraist or algebraic number theorist. --MATHEMATICAL REVIEWS


"""It is well written, encyclopedic, and authoritative and probably belongs on the shelf of any commutative algebraist or algebraic number theorist.""--MATHEMATICAL REVIEWS"


Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List