The Model Legume Medicago truncatula, 2 Volume Set

Author:   Frans J. de Bruijn
Publisher:   John Wiley and Sons Ltd
ISBN:  

9781119409168


Pages:   1264
Publication Date:   27 January 2020
Format:   Hardback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $941.95 Quantity:  
Add to Cart

Share |

The Model Legume Medicago truncatula, 2 Volume Set


Add your own review!

Overview

Fully covers the biology, biochemistry, genetics, and genomics of Medicago truncatula Model plant species are valuable not only because they lead to discoveries in basic biology, but also because they provide resources that facilitate translational biology to improve crops of economic importance. Plant scientists are drawn to models because of their ease of manipulation, simple genome organization, rapid life cycles, and the availability of multiple genetic and genomic tools. This reference provides comprehensive coverage of the Model Legume Medicago truncatula. It features review chapters as well as research chapters describing experiments carried out by the authors with clear materials and methods. Most of the chapters utilize advanced molecular techniques and biochemical analyses to approach a variety of aspects of the Model. The Model Legume Medicago truncatula starts with an examination of M. truncatula plant development; biosynthesis of natural products; stress and M. truncatula; and the M. truncatula-Sinorhizobium meliloti symbiosis. Symbiosis of Medicago truncatula with arbuscular mycorrhiza comes next, followed by chapters on the common symbiotic signaling pathway (CSSP or SYM) and infection events in the Rhizobium-legume symbiosis. Other sections look at hormones and the rhizobial and mycorrhizal symbioses; autoregulation of nodule numbers (AON) in M. truncatula; Medicago truncatula databases and computer programs; and more. Contains reviews, original research chapters, and methods Covers most aspects of the M. truncatula Model System, including basic biology, biochemistry, genetics, and genomics of this system Offers molecular techniques and advanced biochemical analyses for approaching a variety of aspects of the Model Legume Medicago truncatula Includes introductions by the editor to each section, presenting the summary of selected chapters in the section Features an extensive index, to facilitate the search for key terms The Model Legume Medicago truncatula is an excellent book for researchers and upper level graduate students in microbial ecology, environmental microbiology, plant genetics and biochemistry. It will also benefit legume biologists, plant molecular biologists, agrobiologists, plant breeders, bioinformaticians, and evolutionary biologists.

Full Product Details

Author:   Frans J. de Bruijn
Publisher:   John Wiley and Sons Ltd
Imprint:   Wiley-Blackwell
Dimensions:   Width: 22.90cm , Height: 7.40cm , Length: 29.20cm
Weight:   4.377kg
ISBN:  

9781119409168


ISBN 10:   1119409160
Pages:   1264
Publication Date:   27 January 2020
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

Volume I Preface xv Acknowledgments xvi List of contributors xvii Section 1 1.1 General introduction 3 Frans J. de Bruijn Section 2: Overview chapters 7 2.1 A snapshot of functional genetic studies in Medicago truncatula 9 Yun Kang, Minguye Li, Senjuti Sinharoy, and Jerome Verdier 2.2 Medicago truncatula as an ecological evolutionary and forage legume model: new directions forward 31 Eric J.B. von Wettberg, Jayanti Muhkerjee, Ken Moriuchi, and Stephanie S. Porter Section 3: Medicago truncatula plant development 41 3.1 Seed development: introduction 43 Frans J. de Bruijn 3.1.1 A physiological perspective of late maturation processes and establishment of seed quality in Medicago truncatula seeds 44 Jerome Verdier, Olivier Leprince, and Julia Buitink 3.1.2 Medicago truncatula an informative model to investigate the DNA damage response during seed germination 55 Anca Macovei, Andrea Pagano, Chiara Forti, Susana Araújo, and Alma Balestrazzi 3.1.3 Transcriptional networks in early Medicago truncatula embryo development 61 Ray J. Rose 3.1.4 Embryo development and the oil and protein bodies in Medicago truncatula 71 Youhong Song, Xin-Ding Wang, Nathan Smith, Simon Wheeler, and Ray J. Rose 3.1.5 Role of thioredoxins and NADP-thioredoxin reductases in legume seeds and seedlings 80 Françoise Montrichard, Pierre Frendo, Pascal Rey, and Bob Buchanan 3.1.6 Seed shape quantification in the model legumes: methods and applications 92 Emilio Cervantes, Ezzeddine Saadaoui, Ángel Tocino, and José Javier Martín Gómez 3.1.7 The underlying processes governing seed size plasticity: impact of endoploidy on seed coat development and cell expansion in Medicago truncatula 99 S. Ochatt and M. Abirached-Darmency 3.2 Root development: introduction 117 Frans J. de Bruijn 3.2.1 Nitrate signaling pathway via the transporter MtNPF6.8 involves abscisic acid for the regulation of primary root elongation in Medicago truncatula 118 Anis M. Limami and Marie-Christine Morère Le Paven 3.2.2 SCARECROW and SHORT-ROOT show an overlapping expression pattern in the Medicago truncatula nodule central meristem 125 Henk J. Franssen, Olga Kulikova, Xi Wan, Auke Adams, and Renze Heidstra 3.2.3 Lateral root formation and patterning in Medicago truncatula 130 Sandra Bensmihen 3.2.4 Modulation of root elongation by abscisic acid and LATERAL ROOT ORGAN DEFECTIVE/NUMEROUS INFECTIONS AND POLYPHENOLICS via reactive oxygen species in Medicago truncatula 136 Jeanne M. Harris and Chang Zhang 3.2.5 FYVE and PH protein domains present in MtZR1 a PRAF protein modulate the development of roots and symbiotic root nodules of Medicago truncatula via potential phospholipids signaling 144 Julie Hopkins, Olivier Pierre, Pierre Frendo, and Eric Boncompagni 3.3 Leaf development: introduction 153 Frans J. de Bruijn 3.3.1 Compound leaf development in Medicago truncatula 154 Rujin Chen 3.3.2 Mechanistic insights into STENOFOLIA mediated leaf blade outgrowth in Medicago truncatula 173 Fei Zhang, Hui Wang, and Million Tadege 3.4 Flower development: introduction 181 Frans J. de Bruijn 3.4.1 Genetic control of flowering time in legumes 182 James L. Weller, Richard C. Macknight 3.4.2 Forward and reverse screens to identify genes that control vernalization and flowering time in Medicago truncatula 189 Mauren Jaudal, Geoffrey Thomson, Lulu Zhang, Chong Che, Jiangqi Wen, Kirankumar S. Mysore, Million Tadege, and Joanna Putterill 3.4.3 MtNAM regulates floral organ identity and lateral organ separation in Medicago truncatula 197 Xiaofei Cheng, Jianling Peng, Rujin Chen, Kirankumar S. Mysore, and Jiangqi Wen Section 4: Biosynthesis of natural products: introduction 207 4.1 Organization and regulation of triterpene saponin biosynthesis in Medicago truncatula 209 Jan Mertens and Alain Goossens 4.2 Saponins in Medicago truncatula: structures and activities 220 Catherine Sivignon, Isabelle Rahioui, and Pedro da Silva 4.3 Saponin synthesis in Medicago truncatula plants: CYP450-mediated formation of sapogenins in the different plant organs 225 Maria Carelli, Massimo Confalonieri, Aldo Tava, Elisa Biazzi, Ornella Calderini, Pamela Abbruscato, Maria Cammareri, and Carla Scotti Section 5: Stress and Medicago truncatula 237 5.1 Abiotic stress: introduction 239 Frans J. de Bruijn 5.1.1 Genomic and transcriptomic basis of salinity adaptation and transgenerational plasticity in Medicago truncatula 240 Maren L. Friesen 5.1.2 Isolation and functional characterization of salt-stress induced RCI2-like genes from Medicago sativa and Medicago truncatula 243 Ruicai Long, Fan Zhang, Tiejun Zhang, Junmei Kang, and Qingchuan Yang 5.1.3 Rhizobial symbiosis influences response to early salt and drought stress of the Medicago truncatula root proteome 253 Reinhard Turetschek, Christiana Staudinger, and StefanieWienkoop 5.1.4 Deciphering the role of the alternative respiration under salt stress in Medicago truncatula 261 Nestor F Del-Saz, Francisco Palma, Jose Antonio Herrera-Cervera, and Miquel Ribas-Carbo 5.1.5 Effect of arsenic on legumes: analysis in the model Medicago truncatula–Ensifer interaction 268 Eloísa Pajuelo, Ignacio D. Rodríguez-Llorente, and Miguel A. Caviedes 5.1.6 Dual oxidative stress control involving antioxidant defense system and alternative oxidase pathways within the model legume Medicago truncatula under biotic and abiotic constraints 281 Haythem Mhadhbi Section 5.2: Biotic stress: interaction of Medicago truncatula with pathogens and pests 289 5.2.1 Interaction with root and foliar pathogens: introduction 291 Frans J. de Bruijn 5.2.1.1 Medicago truncatula and other annual Medicago spp. – interactions with root and foliar fungal oomycete and viral pathogens 293 Martin J. Barbetti, Ming Pei You, and Roger A.C. Jones 5.2.1.2 Deciphering resistance mechanisms to the root rot disease of legumes caused by Aphanomyces euteiches with Medicago truncatula genetic and genomic resources 307 Christophe Jacquet and Maxime Bonhomme 5.2.1.3 Medicago truncatula as a model organism to study conserved and contrasting aspects of symbiotic and pathogenic signaling pathways 317 Aleksandr Gavrin and Sebastian Schornack 5.2.1.4 Tools and strategies for genetic and molecular dissection of Medicago truncatula resistance against Fusarium wilt disease 331 Louise F. Thatcher, Brendan N. Kidd, and Karam B. Singh 5.2.1.5 Medicago truncatula as a model host for genetic and molecular dissection of resistance to Rhizoctonia solani 340 Jonathan P. Anderson, Brendan N. Kidd, and Karam B. Singh 5.2.1.6 Phosphorus control of plant interactions with mutualistic and pathogenic microorganisms: a mini-review and a case study of the Medicago truncatula B9 mutant 346 Elise Thalineau, Carine Fournier, Sylvain Jeandroz, and Hoai-Nam Truong 5.2.1.7 The Medicago truncatula–Ralstonia solanacearum pathosystem opens up many research perspectives 355 Fabienne Vailleau 5.2.2 Aphid stress: introduction 362 Frans J. de Bruijn 5.2.2.1 Medicago truncatula–aphid interactions 363 Lars G. Kamphuis, Ling-Ling Gao, Colin G.N. Turnbull, and Karam B. Singh 5.2.2.2 Medicago truncatula–pea aphid interaction in the context of global climate change 369 Yucheng Sun, Huijuan Guo, and Feng Ge 5.2.3 Interactions with other pathogens and parasites: introduction 377 Frans J. de Bruijn 5.2.3.1 Characterization of defense mechanisms to parasitic plants in the model Medicago truncatula 378 M. Ángeles Castillejo, Mónica Fernández-Aparicio, and Diego Rubiales 5.2.3.2 Medicago truncatula host/nonhost legume rust interactions 384 Maria Carlota Vaz Patto and Diego Rubiales 5.2.3.3 Medicago truncatula as a model to study powdery mildew resistance 390 Nicolas Rispail, Elena Prats, and Diego Rubiales 5.2.3.4 Antifungal defensins from Medicago truncatula: structure–activity relationships modes of action and biotech applications 398 Siva L.S. Velivelli, Kazi T. Islam, and Dilip M. Shah 5.2.3.5 Leaf me alone: Medicago truncatula defenses against foliar lepidopteran herbivores 409 Jacqueline C. Bede Section 6: The Medicago truncatula–Sinorhizobium meliloti symbiosis 429 6.1 Symbiotic nitrogen fixation: introduction 431 Frans J. de Bruijn 6.2 Signaling and early infection events in the rhizobium–legume symbiosis: introduction 432 Frans J. de Bruijn 6.2.1 The role of the flavonoid pathway in Medicago truncatula in root nodule formation. A review 434 Ulrike Mathesius 6.2.2 Expression and function of the Medicago truncatula lysin motif receptor-like kinase (LysM-RLK) gene family in the legume–rhizobia symbiosis 439 Jean-Jacques Bono, Judith Fliegmann, Clare Gough, and Julie Cullimore 6.2.3 Nod factor hydrolysis in Medicago truncatula: signal inactivation or formation of secondary signals? 448 Jie Cai, Ru-Jie Li, Yi-Han Wang, Zhi-Ping Xie, and Christian Staehelin 6.2.4 The Medicago truncatula E3 ubiquitin ligase PUB1 negatively regulates rhizobial and arbuscular mycorrhizal symbioses through its ubiquitination activity 453 Tatiana Vernié, Malick Mbengue, and Christine Hervé 6.2.5 Encoding nuclear calcium oscillations in root symbioses 461 Aisling Cooke and Myriam Charpentier Section 7: Symbiosis of Medicago truncatula with arbuscular mycorrhiza 467 7.1 Signaling and infection events in the arbuscular mycorrhiza–Medicago truncatula symbiosis: introduction 469 Frans J. de Bruijn 7.1.1 The symbiosis of Medicago truncatula with arbuscular mycorrhizal fungi 471 Nazli Merve Dursun, Eva Nouri, and Didier Reinhardt 7.1.2 Role of phytohormones in arbuscular mycorrhiza development 485 Debatosh Das and Caroline Gutjahr 7.1.3 Laser microdissection of arbuscular mycorrhiza 501 Erik Limpens 7.1.4 Truncated arbuscules formed in the Medicago truncatula mutant MtHA1 maintain mycorrhiza-induced resistance 513 Haoqiang Zhang and Philipp Franken Section 8: The common symbiotic signaling pathway (CSSP or SYM) 521 8.1 The common symbiotic signaling pathway 523 Frédéric Debellé 8.2 Contribution of model legumes to knowledge of actinorhizal symbiosis 529 Didier Bogusz and Claudine Franche 8.3 DELLA proteins are common components of the symbiotic rhizobial and mycorrhizal signaling pathways 537 Qiujin Xie and Ertao Wang Volume II Preface xv Acknowledgments xvi List of contributors xvii Section 9: Infection events in the Rhizobium–legume symbiosis 543 9.1 Genes induced during the rhizobial infection process: introduction 545 Frans J. de Bruijn 9.1.1 Comparative analysis of tubulin cytoskeleton rearrangements in nodules of Medicago truncatula and Pisum sativum 547 Viktor E. Tsyganov, Anna B. Kitaeva, and Kirill N. Demchenko 9.1.2 Post-transcriptional reprogramming during root nodule symbiosis 554 Mauricio Alberto Reynoso, Soledad Traubenik, Karen Hobecker, Flavio Blanco, and María Eugenia Zanetti 9.1.3 MtKNOX3 – a possible regulator of cytokinin pathway during nodule development in Medicago truncatula 563 M. Azarakhsh, Maria A. Lebedeva, and L.A. Lutova 9.1.4 Features of Sinorhizobium meliloti exopolysaccharide succinoglycan required for successful invasion of Medicago truncatula nodules 571 Kathryn M. Jones 9.1.5 Infection thread development in model legumes 579 Daniel J. Gage 9.2 Rhizobial release symbiosomes and bacteroid formation: introduction 589 Frans J. de Bruijn 9.2.1 The Defective in Nitrogen Fixation genes of Medicago truncatula reveal key features in the intracellular association with rhizobia 591 Xiaoyi Wu and Dong Wang 9.2.2 Terminal bacteroid differentiation in the Medicago–Rhizobium interaction – a tug of war between plant and bacteria 600 Andreas F. Haag and Peter Mergaert 9.2.3 More than antimicrobial: nodule cysteine-rich peptides maintain a working balance between legume plant hosts and rhizobia bacteria during nitrogen-fixing symbiosis 617 Huairong Pan 9.2.4 Functional dissection of Medicago truncatula NODULES WITH ACTIVATED DEFENSE 1 in maintenance of rhizobial endosymbiosis 627 Haixiang Yu, Chao Wang, Liuyang Cai, Bei Huang, and Zhongming Zhang 9.2.5 Which role for Medicago truncatula non-specific lipid transfer proteins in rhizobial infection? 637 Chiara Santi, Barbara Molesini, and Tiziana Pandolfini 9.2.6 Syntaxin MtSYP132 defines symbiotic membranes in Medicago truncatula root nodules 645 Madhavi Avadhani, Christina M. Catalano, and D. Janine Sherrier 9.3 Nodule and bacteroid functioning: introduction 650 Frans J. de Bruijn 9.3.1 Metal transport in Medicago truncatula nodule rhizobia-infected cells 652 Isidro Abreu, Viviana Escudero, Jesús Montiel, Rosario Castro-Rodríguez, and Manuel González-Guerrero 9.3.2 Inhibition of glutamine synthetase leads to a fast transcriptional activation of defense responses in root nodules 665 Ana Rita Seabra and Helena Carvalho 9.3.3 Complex dynamics and synchronization of N-feedback and C alteration in the nodules of Medicago truncatula under abundant N or sub-optimal P supply 674 Saad Sulieman 9.4 Bacteroid senescence: introduction 681 Frans J. de Bruijn 9.4.1 Involvement of proteases during nodule senescence in leguminous plants 683 Li Yang, Camille Syska, Isabelle Garcia, Pierre Frendo, and Eric Boncompagni 9.4.2 Senescence of Medicago truncatula root nodules: NO balance 694 Pauline Blanquet, Claude Bruand, and Eliane Meilhoc 9.4.3 Medicago truncatula ESN1 a key regulator of nodule senescence and symbiotic nitrogen fixation 701 Yuhui Chen, Jiejun Xi, and Rujin Chen 9.5 Structure of indeterminate Medicago truncatula nodules: introduction 706 Frans J. de Bruijn 9.5.1 Development and structures of the meristems of roots and indeterminate nodules: introduction 708 Frans J. de Bruijn 9.5.1.1 Organization and ultrastructure of Medicago truncatula root apical meristem 709 Monika Skawińska, Izabela Sańko-Sawczenko, Dominika Dmitruk,Weronika Czarnocka, and Barbara Łotocka 9.5.1.2 Organization and ultrastructure of Medicago truncatula root nodule meristem 726 Monika Skawińska, Izabela Sańko-Sawczenko, Weronika Czarnocka, and Barbara Łotocka Section 10: Hormones and the rhizobial and mycorrhizal symbioses 741 10.1 Phytohormone regulation of Medicago truncatula–rhizobia interactions. A review 743 Ulrike Mathesius 10.2 Plant hormones play common and divergent roles in nodulation and arbuscular mycorrhizal symbioses 753 Eloise Foo 10.3 Auxins and other phytohormones as signals in arbuscular mycorrhiza formation 766 Jutta Ludwig-Muller 10.4 Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at the whole genome level 777 Lei Chen, Tianzuo Wang, Mingui Zhao, and Wen-Hao Zhang 10.5 Hormone-induced nodule-like structures in land plants: an update 785 Jacklyn Thomas and Arijit Mukherjee 10.6 Structural studies of Medicago truncatula proteins participating in cytokinin signal transduction and nodulation 794 Milosz Ruszkowski 10.7 Identifying auxin response factor genes and their co-expression networks in Medicago truncatula 802 David J. Burks and Rajeev K. Azad Section 11: Autoregulation of nodule numbers (AON) in Medicago truncatula 809 11.1 The autoregulation gene SUNN mediates changes in nodule and lateral root formation in response to nitrogen through changes of shoot-to-root auxin transport 811 Ulrike Mathesius, Giel E. van Noorden, and Jian Jin Section 12: Genetics and genomics of Medicago truncatula 817 12.1 Genetic map of Medicago truncatula 819 Frans J. de Bruijn 12.2 The genome sequence of Medicago truncatula: introduction 821 Frans J. de Bruijn 12.2.1 An improved genome release (Version Mt4.0) for the model legume Medicago truncatula 822 Christopher D. Town 12.2.2 The sequenced genomes of Medicago truncatula 828 Nevin D. Young, and Peng Zhou 12.3 Quantitative trait loci mapping: introduction 835 Frans J. de Bruijn 12.3.1 QTL analyses of seed germination and seedling pre-emergence growth under abiotic stresses in Medicago truncatula 837 Beatrice Teulat 12.3.2 Unraveling the determinants of freezing tolerance in Medicago truncatula: a first step toward improving the response of crop legumes to freezing stress using translational genomics 849 Nadim Tayeh, Komlan Avia, Isabelle Lejeune-Hénaut, and Bruno Delbreil 12.4 Genome-wide association and Medicago truncatula: introduction 862 Frans J. de Bruijn 12.4.1 Multi-locus GWAS and genome-wide composite interval mapping (GCIM) 863 Yuan-Ming Zhang 12.4.2 Genome-wide association mapping and population genomic features in Medicago truncatula 870 Maxime Bonhomme and Christophe Jacquet 12.4.3 The use of CRISPR/Cas9 as a reverse genetics tool to validate genome-wide association candidates 882 Shaun J. Curtin, Peter Tiffin, and Nevin D. Young 12.5 Transposons gene instability and gene tagging: introduction 887 Frans J. de Bruijn 12.5.1 Class II transposable elements in Medicago truncatula 888 Dariusz Grzebelus 12.6 Medicago truncatula and evolution: introduction 893 Frans J. de Bruijn 12.6.1 Comparative genomics suggests that an ancestral polyploidy event leads to enhanced root nodule symbiosis in the Papilionoideae 895 Li Zhang, Qigang Li, Jim M. Dunwell, and Yuan-Ming Zhang 12.6.2 Patterns of polymorphism recombination and selection in Medicago truncatula 903 Timothy Paape 12.6.3 Genome-wide determination of poly(A) sites in Medicago truncatula: evolutionary conservation of alternative poly(A) site choice 911 Xiaohui Wu, Arthur G. Hunt, and Qingshun Q. Li 12.7 The Medicago truncatula genome and translational genomics: introduction 921 Frans J. de Bruijn 12.7.1 GBS-based genome-wide association and genomic selection for alfalfa (Medicago sativa) forage quality improvement 923 Elisa Biazzi, Nelson Nazzicari, Luciano Pecetti, and Paolo Annicchiarico 12.8 Genomic and genetic markers in Medicago truncatula: introduction 928 Frans J. de Bruijn 12.8.1 Development and characterization of simple sequence repeat (SSR) markers based on RNA-sequencing of Medicago sativa and in silico mapping onto the Medicago truncatula genome 930 Zan Wang 12.8.2 Genome-wide development of microRNA-based SSR markers in Medicago truncatula with their transferability analysis and utilization in related legume species 936 Wenxian Liu, Xueyang Min, and Yanrong Wang 12.9 Small RNAs in Medicago truncatula: introduction 946 Frans J. de Bruijn 12.9.1 Small RNA diversity and roles in model legumes 948 Hélène Proust, Jérémy Moreau, Martin Crespi, Caroline Hartmann, and Christine Lelandais-Brière 12.9.2 Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of Medicago sativa and Medicago truncatula 963 Ruicai Long, Mingna Li, Junmei Kang, Tiejun Zhang, Yan Sun, and Qingchuan Yang 12.9.3 MiR171h restricts root symbioses and shows like its target NSP2 a complex transcriptional regulation in Medicago truncatula 975 Emanuel A. Devers 12.9.4 MicroRNA-based biotechnology for Medicago improvement 987 Baohong Zhang and Turgay Unver 12.9.5 Expression and regulation of small RNAs in the plant–microorganism symbioses in Medicago truncatula 991 Danfeng Jin, Xianwen Meng, Yue Wang, Jingjing Wang, Yuhua Zhao, and Ming Chen 12.10 Mutagenesis forward and reverse genetics in Medicago truncatula: introduction 1003 Frans J. de Bruijn 12.10.1 Isolation and characterization of non-transposon symbiotic nitrogen fixing mutants of Medicago truncatula 1006 Gyöngyi Zs. Kováts, Lili Fodor, Beatrix Horváth, Ágota Domonkos, Gergely Iski, Yuhui Chen, Rujin Chen, and Péter Kaló 12.10.2 Targeted mutagenesis by an optimized agrobacterium-delivered CRISPR/Cas9 system in the model legume Medicago truncatula 1015 Yingying Meng, ChongnanWang, Pengcheng Yin, Butuo Zhu, Pengcheng Zhang, Lifang Niu, and Hao Lin 12.10.3 Whole genome sequencing of symbiotic nitrogen fixation mutants from the Medicago truncatula Tnt1 mutant population to identify relevant Tnt1 and MERE1 insertion sites 1019 Vijaykumar Veerappan, Taylor Troiani, and Rebecca Dickstein 12.10.4 A simple method for genetic crossing in Medicago truncatula 1027 Marc Bosseno, Annie Lambert, Daniel Beucher, Marie Le Gleuher, Catherine Aubry, Nicolas Pauly, Françoise Montrichard, and Alexandre Boscari 12.10.5 An artificial-microRNA system based on an endogenous microRNA of Medicago truncatula to unravel the function of root endosymbiosis related genes 1033 Emanuel A. Devers 12.11 Transcriptomics in Medicago truncatula: introduction 1043 Frans J. de Bruijn 12.11.1 Synergism and symbioses: unpacking complex mutualistic species interactions using transcriptomic approaches 1045 Damian Hernandez, Kasey N. Kiesewetter, Sathvik Palakurty, John R. Stinchcombe, and Michelle E. Afkhami 12.11.2 Comparative genomic and transcriptomic analyses of legume genes controlling the nodulation process 1055 Lise Pingault, Zhenzhen Qiao, and Marc Libault 12.11.3 Transcriptomic profiling of genes and pathways associated with osmotic and salt stress responses in Medicago truncatula 1062 Tianzuo Wang, Xiuxiu Zhang, Min Liu, and Wen-Hao Zhang 12.12 Medicago truncatula proteomics: introduction 1069 Frans J. de Bruijn 12.12.1 Organelle protein changes in arbuscular mycorrhizal Medicago truncatula roots as  deciphered by subcellular proteomics 1070 Ghislaine Recorbet, Christelle Lemaıtre-Guillier, and Daniel Wipf 12.12.2 Leveraging proteome and phosphoproteome to unravel the molecular mechanisms of legume–rhizobia symbiosis 1081 Dhileepkumar Jayaraman, Muthusubramanian Venkateshwaran, and Jean-Michel Ané 12.12.3 Application of bottom-up and top-down proteomics in Medicago spp. 1087 Annelie Gutsch, Kjell Sergeant, and Jenny Renaut 12.12.4 Medicago truncatula: local response of the root nodule proteome to drought stress 1096 Esther M. Gonzalez, Stefanie Wienkoop, Christiana Staudinger, David Lyon, and Erena Gil-Quintana 12.12.5 Comparative proteomic analysis reveals differential root proteins in Medicago sativa and Medicago truncatula in response to salt stress 1102 Ruicai Long, Mingna Li, Tiejun Zhang, Junmei Kang, Yan Sun, and Qingchuan Yang 12.13 Medicago truncatula metabolomics: introduction 1112 Frans J. de Bruijn 12.13.1 Multifaceted investigation of metabolites during nitrogen fixation in Medicago truncatula via high resolution MALDI-MS imaging and ESI-MS 1113 Erin Gemperline, Caitlin Keller, and Lingjun Li Section 13: Medicago truncatula databases and computer programs 1121 13.1 MTGD: the Medicago truncatula genome database 1123 Vivek Krishnakumar 13.2 Transcriptional factor databases for legume plants 1131 Quang Ong, Van-Anh Le, Nguyen Phuong Thao, and Lam-Son Phan Tran 13.3 Plant Omics Data Center and CATchUP: web databases for effective gene mining utilizing public RNA-Seq-based transcriptome data 1137 Matt Shenton, Toru Kudo, Masaaki Kobayashi, Yukino Nakamura, Hajime Ohyanagi, and Kentaro Yano Section 14: Medicago truncatula and transformation 1147 14.1 Recent advances in Medicago spp. genetic engineering strategies 1149 Massimo Confalonieri and Francesca Sparvoli 14.2 Agrobacterium tumefaciens transformation of Medicago truncatula cell suspensions 1162 Anelia Iantcheva and Miglena Revalska 14.3 The Jemalong 2HA line used for Medicago truncatula transformation: hormonology and epigenetics 1170 Ray J. Rose and Youhong Song 14.4 Creation of composite plants – transformation of Medicago truncatula roots 1179 Bettina Hause and Heena Yadav Index 1185

Reviews

Author Information

Frans de Bruijn was Director of the Laboratory for Plant-Microbe Interaction, a mixed INRA/CNRS research facility with about 100 scientists and support staff in Toulouse, France. He served as Director for two years and is currently Director of Recherche DR1.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List