International Energy Agency/Small Solar Power Systems Project: The IEA, SSPS High Flux Experiment: Testing the Advanced Sodium Receiver at Heat Fluxes up to 2.5 MW/m2

Author:   Wolfgang Schiel ,  MichaelA. Geyer ,  Ricardo Carmona
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Softcover reprint of the original 1st ed. 1987
ISBN:  

9783540182245


Pages:   202
Publication Date:   03 December 1987
Format:   Paperback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $145.07 Quantity:  
Add to Cart

Share |

International Energy Agency/Small Solar Power Systems Project: The IEA, SSPS High Flux Experiment: Testing the Advanced Sodium Receiver at Heat Fluxes up to 2.5 MW/m2


Add your own review!

Overview

Results and conclusions of the IEA-SSPS High Experiment are presented together with the thermodynamic theory of the Advanced Sodium Receiver. During the experiment, flux distributions, surface temperature distributions, efficiencies and losses, were measured and calculated in a power range of 0.8-3.5 MW at different sodium inlet/outlet temperatures. The design heat flux of 1.4 MW/m2 was increased to 2.5 MW/m2 resulting in a slightly increased total receiver efficiency of over 90%.

Full Product Details

Author:   Wolfgang Schiel ,  MichaelA. Geyer ,  Ricardo Carmona
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   Softcover reprint of the original 1st ed. 1987
Dimensions:   Width: 15.20cm , Height: 1.20cm , Length: 22.90cm
Weight:   0.335kg
ISBN:  

9783540182245


ISBN 10:   3540182241
Pages:   202
Publication Date:   03 December 1987
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Paperback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

1. High Flux Experiment Test Program.- 1.1 The Advanced Sodium Receiver at SSPS-CRS.- 1.2 Heliostat fields available at IEA-SSPS.- 1.3 Achievable High Flux Operating Conditions.- 1.4 The Test matrix for the High Flux Experiment.- 1.5 The High Flux Experiment Test Program.- 1.6 Participants and Work Packages.- 1.7 References.- 2. Asr Thermal and Stress Analysis for 2.5 Mw/M2 Peak Flux.- 2.1 Introduction.- 2.2 Thermal Analysis.- 2.2.1 Incident heat flux map.- 2.2.2 Receiver performance at different inlet/outlet conditions.- 2.2.3 Detailed thermal analysis results for case A3.- 2.2.4 HFD and FAS bar passes shading effect.- 2.3 Evaluation of ASR residual lifetime before High Flux Testing.- 2.3.1 ASR spent life evaluation before starting the HFE.- 2.3.2 ASR residual lifetime.- 2.4 Stress Analysis.- 2.4.1 New operating conditions to be considered in the lifetime analysis.- 2.4.2 ASR critical points for stress analysis.- 2.4.3 Most irradiated tube panel stress analysis.- 2.4.4 Triplet stress analysis.- 2.4.5 Lifetime evaluation.- 2.5 Conclusions.- 2.6 References.- 3. Metallographic Analysis of the Asr Receiver Tubes.- 3.1 Introduction.- 3.2 Results of investigation.- 3.2.1 Visual assessment of the tube wall.- 3.2.2 Positions of the test points on the tube wall.- 3.2.3 Performance of the nondestructive structural inspection and findings.- 3.3 Assessment of the investigation findings.- 4. Asr Tube Deformation Measurements.- 4.1 Introduction.- 4.2 Method of Measurement.- 4.3 Results.- 4.4 Conclusions.- 5. Asr Absorptance Measurements.- 5.1 Introduction.- 5.2 Instrument characteristics.- 5.3 Methods for estimating absorptance distribution.- 5.3.1 Absorptivity Distribution Calculation.- 5.3.2 Method for determination of homogeneous absorptivity zones.- 5.4 Results.- 5.5 Conclusion.- 6. Heliostat Selection for Certain Peak/Power Levels.- 6.1 Introduction.- 6.2 Input Data.- 6.3 Output Data.- 6.4 Results.- 6.5 References.- 7. Determination of Feasible Peak and Power Levels.- 7.1 Introduction.- 7.2 Prediction of Irradiance.- 7.2.1 First Method.- 7.2.2 Second Method.- 7.2.3 Results.- 7.3 Determination of the feasible peak/power levels.- 7.3.1 Parameters which affect the feasible power-peak region.- 7.3.1.1 Irradiance.- 7.3.1.2 Sun elevation.- 7.3.1.3 Heliostat aiming strategy.- 7.3.1.4 Heliostat availability.- 7.3.1.5 Reflectivity of the heliostat mirrors.- 7.4 Conclusions.- 7.5 References.- 8. Evaluation and Qualification of the HFD Bar.- 8.1 Introduction.- 8.2 Description of the HFD Measurement System.- 8.3 Repeatability of the HFD Bar Measurements.- 8.4 Comparison of HFD bar measurements and HELIOS calculations.- 8.5 Conversion to the ASR Plane.- 8.6 Conclusions.- 8.7 References.- 9. Receiver Thermodynamics Under High Flux Conditions.- 9.1 Introduction.- 9.2 Numerical simulation.- 9.3 Comparison Calculation-Measurement.- 9.4 High Flux Experiment.- 9.5 Conclusions.- 9.6 References.- 10. ASR Simulation with the `Theresa' Code.- 10.1 Introduction.- 10.2 Modifications of THERESA.- 10.3 Results.- 10.4 Conclusions.- 11. ASR Surface Temperature Measurements.- 11.1 Introduction.- 11.2 Measurement method and hardware.- 11.2.1 Picture Processing.- 11.2.1.1 Calibration of infrared pictures with panel inlet temperatures.- 11.2.1.2 Correction of the geometrical distortions.- 11.2.2 Estimation of error for the infrared imaging system.- 11.2.3 Estimation of emissivity.- 11.2.4 Average surface temperature, emission and convection losses.- 11.3 Presentation and Discussion of the Results.- 11.3.1 Measurement days and tests performed.- 11.3.2 Collected raw data for the evaluation of the infrared data.- 11.3.3 Measured temperature distributions.- 11.4 Conclusions.- 11.5 References:.- 12. Advanced Sodium Receiver Losses.- 12.1 Introduction.- 12.2 Optical losses.- 12.3 Thermal Losses.- 12.3.1 Description of the experiments.- 12.3.1.1 Normal flow operation.- 12.3.1.2 Reverse flow operation.- 12.3.2 Total losses.- 12.3.3 Radiative losses.- 12.3.4 Conductive losses.- 12.3.5 Convective Losses.- 12.3.6 Convective Coefficient.- 12.4 Procedure for calculating the losses during normal operation.- 12.5 References.- 13. ASR Loss Tests by Complementary Heliostat Field Configurations.- 13.1 Evaluation Method.- 13.2 External Receiver Thermal Loss.- 13.3 Part-Load Performance.- 13.3.1 Thermal Loss Predictions.- 13.4 Thermal Loss Predictions (Receiver Math Model).- 13.5 Conclusions.- 13.6 References.- 14. Receiver Efficiency Evaluation Based on Recorded Das Data and Helios Calculations.- 14.1 Introduction.- 14.2 Methods.- 14.2.1 Definition of Steady State.- 14.2.2 Calculation Methods.- 14.3 Results.- 14.4 Power Distribution.- 14.4.1 Receiver Efficiency.- 14.4.2 Panel efficiencies.- 14.5 Conclusions.- 14.6 References.- 15. ASR High Flux Experiment Results and Conclusions.- 15.1 Introduction.- 15.2 Major achievements.- 15.3 Results.- 15.3.1 Thermomechanic Evaluation.- 15.3.2 Thermodynamic Evaluation.- 15.3.2.1 Incident Flux Distributions.- 15.3.2.2 Temperature Distributions.- 15.3.2.3 Thermal Losses.- 15.3.2.4 ASR Efficiencies.- 15.4 Conclusions.- 15.5 References.- Appendix A. Tables of Infrared Measurements.- Appendix B. List of Illustrations.- Appendix C. List of Tables.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

lgn

al

Shopping Cart
Your cart is empty
Shopping cart
Mailing List