|
|
|||
|
||||
OverviewFull Product DetailsAuthor: Hannes Risken , Till FrankPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 2nd ed. 1996 Volume: 18 Dimensions: Width: 17.00cm , Height: 2.70cm , Length: 24.20cm Weight: 1.570kg ISBN: 9783540615309ISBN 10: 354061530 Pages: 472 Publication Date: 17 September 1996 Audience: College/higher education , Professional and scholarly , Undergraduate , Postgraduate, Research & Scholarly Format: Paperback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents1. Introduction.- 1.1 Brownian Motion.- 1.2 Fokker-Planck Equation.- 1.3 Boltzmann Equation.- 1.4 Master Equation.- 2. Probability Theory.- 2.1 Random Variable and Probability Density.- 2.2 Characteristic Function and Cumulants.- 2.3 Generalization to Several Random Variables.- 2.4 Time-Dependent Random Variables.- 2.5 Several Time-Dependent Random Variables.- 3. Langevin Equations.- 3.1 Langevin Equation for Brownian Motion.- 3.2 Ornstein-Uhlenbeck Process.- 3.3 Nonlinear Langevin Equation, One Variable.- 3.4 Nonlinear Langevin Equations, Several Variables.- 3.5 Markov Property.- 3.6 Solutions of the Langevin Equation by Computer Simulation.- 4. Fokker-Planck Equation.- 4.1 Kramers-Moyal Forward Expansion.- 4.2 Kramers-Moyal Backward Expansion.- 4.3 Pawula Theorem.- 4.4 Fokker-Planck Equation for One Variable.- 4.5 Generation and Recombination Processes.- 4.6 Application of Truncated Kramers-Moyal Expansions.- 4.7 Fokker-Planck Equation for N Variables.- 4.8 Examples for Fokker-Planck Equations with Several Variables.- 4.9 Transformation of Variables.- 4.10 Covariant Form of the Fokker-Planck Equation.- 5. Fokker-Planck Equation for One Variable; Methods of Solution.- 5.1 Normalization.- 5.2 Stationary Solution.- 5.3 Ornstein-Uhlenbeck Process.- 5.4 Eigenfunction Expansion.- 5.5 Examples.- 5.6 Jump Conditions.- 5.7 A Bistable Model Potential.- 5.8 Eigenfunctions and Eigenvalues of Inverted Potentials.- 5.9 Approximate and Numerical Methods for Determining Eigenvalues and Eigenfunctions.- 5.10 Diffusion Over a Barrier.- 6. Fokker-Planck Equation for Several Variables; Methods of Solution.- 6.1 Approach of the Solutions to a Limit Solution.- 6.2 Expansion into a Biorthogonal Set.- 6.3 Transformation of the Fokker-Planck Operator, Eigenfunction Expansions.- 6.4 Detailed Balance.- 6.5 Ornstein-Uhlenbeck Process.- 6.6 Further Methods for Solving the Fokker-Planck Equation.- 7. Linear Response and Correlation Functions.- 7.1 Linear Response Function.- 7.2 Correlation Functions.- 7.3 Susceptibility.- 8. Reduction of the Number of Variables.- 8.1 First-Passage Time Problems.- 8.2 Drift and Diffusion Coefficients Independent of Some Variables.- 8.3 Adiabatic Elimination of Fast Variables.- 9. Solutions of Tridiagonal Recurrence Relations, Application to Ordinary and Partial Differential Equations.- 9.1 Applications and Forms of Tridiagonal Recurrence Relations.- 9.2 Solutions of Scalar Recurrence Relations.- 9.3 Solutions of Vector Recurrence Relations.- 9.4 Ordinary and Partial Differential Equations with Multiplicative Harmonic Time-Dependent Parameters.- 9.5 Methods for Calculating Continued Fractions.- 10. Solutions of the Kramers Equation.- 10.1 Forms of the Kramers Equation.- 10.2 Solutions for a Linear Force.- 10.3 Matrix Continued-Fraction Solutions of the Kramers Equation.- 10.4 Inverse Friction Expansion.- 11. Brownian Motion in Periodic Potentials.- 11.1 Applications.- 11.2 Normalization of the Langevin and Fokker-Planck Equations.- 11.3 High-Friction Limit.- 11.4 Low-Friction Limit.- 11.5 Stationary Solutions for Arbitrary Friction.- 11.6 Bistability between Running and Locked Solution.- 11.7 Instationary Solutions.- 11.8 Susceptibilities.- 11.9 Eigenvalues and Eigenfunctions.- 12. Statistical Properties of Laser Light.- 12.1 Semiclassical Laser Equations.- 12.2 Stationary Solution and Its Expectation Values.- 12.3 Expansion in Eigenmodes.- 12.4 Expansion into a Complete Set; Solution by Matrix Continued Fractions.- 12.5 Transient Solution.- 12.6 Photoelectron Counting Distribution.- Appendices.- A1 Stochastic Differential Equations with Colored Gaussian Noise.- A2 Boltzmann Equation with BGK and SW Collision Operators.- A3 Evaluation of a Matrix Continued Fraction for the Harmonic Oscillator.- A4 Damped Quantum-Mechanical Harmonic Oscillator.- A5 Alternative Derivation of the Fokker-Planck Equation.- A6 Fluctuating Control Parameter.- S. Supplement to the Second Edition.- S.1 Solutions of the Fokker-Planck Equation by Computer Simulation (Sect. 3.6).- S.2 Kramers-Moyal Expansion (Sect. 4.6).- S.3 Example for the Covariant Form of the Fokker-Planck Equation (Sect. 4.10).- S.4 Connection to Supersymmetry and Exact Solutions of the One Variable Fokker-Planck Equation (Chap. 5).- S.5 Nondifferentiability of the Potential for the Weak Noise Expansion (Sects. 6.6 and 6.7).- S.6 Further Applications of Matrix Continued-Fractions (Chap. 9).- S.7 Brownian Motion in a Double-Well Potential (Chaps. 10 and 11).- S.8 Boundary Layer Theory (Sect. 11.4).- S.9 Calculation of Correlation Times (Sect. 7.12).- S.10 Colored Noise (Appendix A1).- S.11 Fokker-Planck Equation with a Non-Positive-Definite Diffusion Matrix and Fokker-Planck Equation with Additional Third-Order-Derivative Terms.- References.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |