|
|
|||
|
||||
OverviewThis book presents a general framework for modelling power system devices to develop complete electromechanical models for synchronous machines, induction machines, and power electronic devices. It also presents linear system analysis tools that are specific to power systems and which are not generally taught in undergraduate linear system courses. Lastly, the book covers the application of the models, analysis and tools to the design of automatic voltage controllers and power system stabilisers, both for single-machine-infinite-bus systems and multi-machine interconnected systems. In most textbooks modelling, dynamic analysis, and control are closely linked to the computation methods used for analysis and design. In contrast, this book separates the essential principles and the computational methods used for power system dynamics and control. The clear distinction between principles and methods makes the potentially daunting task of designing controllers for power systems much easier to approach. A rich set of exercises is also included, and represents an integral part of the book. Students can immediately apply—using any computational tool or software—the essential principles discussed here to practical problems, helping them master the essentials. Full Product DetailsAuthor: Hemanshu Roy PotaPublisher: Springer Verlag, Singapore Imprint: Springer Verlag, Singapore Edition: Softcover Reprint of the Original 1st 2018 ed. Weight: 0.496kg ISBN: 9789811342714ISBN 10: 9811342717 Pages: 222 Publication Date: 07 February 2019 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of Contents1 Introduction.- 2 Synchronous Machines.- 3 Induction Machines.- 4 Network Equations Power Systems.- 5 Simulations.- 6 Linear Control: Analysis.- 7 AVR Tuning.- 8 Power System Stabilisers.ReviewsAuthor InformationDr Hemanshu Pota is a Associate Professor at the University of New South Wales. His research interests are in the areas of modelling and control of flexible structures and acoustical noise, as well as cable-driven long-reach manipulators. He has worked on obtaining models for distributed parameter systems using symbolic algebra software, and on various control techniques for distributed parameter systems, including: H-infinity, spatial control, resonant control, passivity-based controller design and minimax linear quadratic Gaussian (LQG) control. Tab Content 6Author Website:Countries AvailableAll regions |