The Elements of Joint Learning and Optimization in Operations Management

Author:   Xi Chen ,  Stefanus Jasin ,  Cong Shi
Publisher:   Springer International Publishing AG
Edition:   1st ed. 2022
Volume:   18
ISBN:  

9783031019289


Pages:   444
Publication Date:   22 September 2023
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $232.85 Quantity:  
Add to Cart

Share |

The Elements of Joint Learning and Optimization in Operations Management


Add your own review!

Overview

This book examines recent developments in Operations Management, and focuses on four major application areas: dynamic pricing, assortment optimization, supply chain and inventory management, and healthcare operations. Data-driven optimization in which real-time input of data is being used to simultaneously learn the (true) underlying model of a system and optimize its performance, is becoming increasingly important in the last few years, especially with the rise of Big Data.

Full Product Details

Author:   Xi Chen ,  Stefanus Jasin ,  Cong Shi
Publisher:   Springer International Publishing AG
Imprint:   Springer International Publishing AG
Edition:   1st ed. 2022
Volume:   18
Weight:   0.700kg
ISBN:  

9783031019289


ISBN 10:   3031019288
Pages:   444
Publication Date:   22 September 2023
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Part 1: Generic Tools.- Chapter 1: The Stochastic Multi-armed Bandit Problem.- Chapter 2: Reinforcement Learning.- Chapter 3: Optimal Learning and Optimal Design.- Part 2: Price Optimization.- Chapter 4: Dynamic Pricing with Demand Learning: Emerging Topics and State of the Art.- Chapter 5: Learning and Pricing with Inventory Constraints.- Chapter 6: Dynamic Pricing and Demand Learning in Nonstationary Environments.- Chapter 7: Pricing with High-Dimensional Data.- Part 3: Assortment Optimization.- Chapter 8: Nonparametric Estimation of Choice Models.- Chapter 9: The MNL-Bandit Problem.- Chapter 10: Dynamic Assortment Optimization: Beyond MNL Model.- Part 4: Inventory Optimization.- Chapter 11: Inventory Control with Censored Demand.- Chapter 12: Joint Pricing and Inventory Control with Demand Learning.- Chapter 13: Optimization in the Small-Data, Large-Scale Regime.- Part 5: Healthcare Operations.- Chapter 14: Bandit Procedures for Designing Patient-Centric Clinical Trials.- Chapter 15: Dynamic Treatment Regimes.

Reviews

Author Information

Xi Chen is an Assistant Professor of Information, Operations and Management Sciences in New York University Stern School of Business (US). Professor Chen studies machine learning and optimization, high-dimensional statistics and operations research. He is developing parametric and non-parametric statistical methods as well as efficient optimization algorithms to address challenges in high-dimensional data analysis. He also works on statistical learning and online decision-making for crowdsourcing. He also investigates operations research/management problems, such as the optimal network design in process flexibility, approximate dynamic programming and revenue management.  Stefanus Jasin is an Assistant Professor of Technology and Operations at the Ross School of Business, University of Michigan, Ann Arbor (US). He is broadly interested in many topics that lie at the intersection of OR, OM, IS, and Marketing, with an emphasis on developing provablynear-optimal and easily implementable heuristic controls. Some of his works include: real-time pricing, e-commerce order fulfillment, assortment optimization, delivery consolidation, inventory optimization, and joint learning and optimization. Most recently, he is also working on optimization in the on-demand market.  Cong Shi is an Associate Professor at the University of Michigan (US). His research is focused on the design of efficient algorithms with theoretical performance guarantees for stochastic optimization models in operations management. Main areas of applications include inventory control, supply chain management, revenue management, and service operations. 

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

lgn

al

Shopping Cart
Your cart is empty
Shopping cart
Mailing List