|
|
|||
|
||||
OverviewThe most commonly used parameter of digital circuits, the gate delay time, does not exist. This problem emerges most clearly in the high-speed CMOS, above 1 GHz clock frequency. This book explains why that is so and then how to deal with the situation in a practical manner. Most of the large IC companies, and many of the small IC design companies, are now racing to capture above 1 GHz clock CMOS IC markets. A few examples of such companies in the United States are Motorola, Intel and DEC. Numerous small design-only companies are also interested in this technology. The above 1 GHz circuit design is an extremely difficult concept. The text shows that the fastest CMOS circuits can be understood and designed only after understanding their quantum-mechanical nature. The book should help the circuit designer to learn how to deal with the problems of circuit delay when the gate delay is not a valid concept at high switching speeds and how to design the fastest critical paths. It outlines essential and fundamental guidelines for designing the fastest CMOS circuits. It also explains how to design and structure computer-aided designs to deal with above 1 GHz circuits. It should be of interest to IC designers and CAD professionals alike. Full Product DetailsAuthor: Masakazu ShojiPublisher: Springer Imprint: Springer Edition: 1998 ed. Dimensions: Width: 15.60cm , Height: 1.70cm , Length: 23.40cm Weight: 0.612kg ISBN: 9780792380931ISBN 10: 0792380932 Pages: 276 Publication Date: 30 November 1997 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Out of stock The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Table of Contents1 Propagation of Digital Excitation in the Gate Field.- 1.01 Introduction.- 1.02 Examples of the Gate Field.- 1.03 The Vector Gate Field.- 1.04 Energy Transfer in Gate Field.- 1.05 CMOS Inverter Switching Process.- 1.06 The Velocity of the Propagation of Excitation.- 1.07 An Equation of the Motion of Excitation.- 1.08 Node Waveform of Logic Circuits.- 1.09 Logic Threshold Voltage and Gate Delay Time.- 1.10 Nonmonotonous Node-Switching Voltage Waveforms.- 1.11 The Strange Consequences of the Classical Delay-Time Definition.- 1.12 The Phase Transition of the Gate Field.- 1.13 The Miller Effect in the Gate Field.- 1.14 Feedforward Excitation Transmission.- 1.15 The Gate Field of a Negative-Resistance Diode.- 2 Quantum Mechanics of Digital Excitation.- 2.01 Introduction.- 2.02 Elementary and Composite Excitation.- 2.03 Finite and Infinite Energy Associated with Excitation.- 2.04 An Eigenvalue Problem in the Gate Field.- 2.05 The Eigensolution of a Gate-Field Waveform.- 2.06 Gate-Field Variable Measurements.- 2.07 Latch Circuit for Boolean-Level Determination.- 2.08 The Decision Threshold.- 2.09 The Probabilistic Interpretation of Boolean Level.- 2.10 Metastability in Observation.- 2.11 Propagation of Excitation through a Nonuniform Field.- 2.12 The Tunnel Effect of Digital Excitation.- 2.13 Ambiguity in the Cause and Effect Relationship.- 2.14 Valid Delay-Time Measurement of the Digital Circuit.- 2.15 The Quantum-Mechanical Delay Definition.- 2.16 Design Guidelines for Ultrafast Circuits.- 2.17 Natural Decay of Composite Excitation.- 2.18 A Theory of the Decay of Isolated Pulses.- 2.19 Mass of Digital Excitation.- 2.20 The Dynamics of Digital Excitation in Closed Path.- 3 The Macrodynamics of Digital Excitation.- 3.01 Introduction.- 3.02 Quantum States.- 3.03 Bohr’sCorrespondence Principle.- 3.04 States of Nodes and Circuits.- 3.05 The Capability of a Circuit to Store Information.- 3.06 Information Stored in a Ring.- 3.07 Extraction of the Features of Data Pattern.- 3.08 Digital Excitation in a Closed Path.- 3.09 Multiple Ringoscillators.- 3.10 A General Observation of Ringoscillator Dynamics.- 3.11 Modes of Oscillation.- 3.12 A State-Space Representation of Ringoscillator.- 3.13 The Practical Significance of Ringoscillator Logic.- 3.14 An Asynchronous Multiloop Ringoscillator.- 3.15 The Precision of an FET Model and Simulator.- 3.16 Conclusion.- 3.17 The Future Direction of Digital-Circuit Research.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |