|
|
|||
|
||||
OverviewThis book is intended to give an overview on the latest SAW technologies such as design and simulation of resonator-based devices employing the SH-type leaky SAW. Although various theoretical backgrounds relevant for simulation and design techniques are explained in detail the mathematics of the description was kept as simple as possible. Full Product DetailsAuthor: Ken-Ya HashimotoPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 2000 ed. Dimensions: Width: 15.60cm , Height: 2.00cm , Length: 23.40cm Weight: 1.480kg ISBN: 9783540672326ISBN 10: 354067232 Pages: 330 Publication Date: 21 June 2000 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents1. Bulk Acoustic and Surface Acoustic Waves.- 2. Grating.- 3. Interdigital Transducers.- 4. Transversal Filters.- 5. Resonators.- 6. Selection of Substrate Material.- 7. Coupling-of-Modes Theory.- 8. Simulation of SH-type SAW Devices.- A. Physics of Acoustic Waves.- A.1 Elasticity of Solids.- A.2 Piezoelectricity.- A.3 Surface Acoustic Waves.- A.4 Effective Acoustic Admittance Matrix and Permittivity.- A.5 Acoustic Wave Properties in 6mm Materials.- A.5.1 Rayleigh-Type SAWs.- A.5.2 Effective Permittivity for BGS Waves.- A.5.3 Effective Acoustic Admittance Matrix.- A.6 Wave Excitation.- A.6.1 Integration Path.- A.6.2 Electrostatic Coupling.- A.6.3 BGS Wave Excitation.- A.6.4 SSBW Excitation.- References.- B. Analysis of Wave Propagation on Grating Structures.- B.1 Summary.- B.2 Metallic Gratings.- B.2.1 Bløtekjr’s Theory for Single-Electrode Gratings.- B.2.2 Wagner’s Theory for Oblique Propagation.- B.2.3 Aoki’s Theory for Double-Electrode Gratings.- B.2.4 Extension to Triple-Electrode Gratings.- B.3 Analysis of Metallic Gratings with Finite Thickness.- B.3.1 Combination with Finite Element Method.- B.3.2 Application to Extended Bløtekjær Theories.- B.4 Wave Excitation and Propagation in Grating Structures.- B.4.1 Effective Permittivity for Grating Structures.- B.4.2 Evaluation of Discrete Green Function.- B.4.3 Delta-Function Model.- B.4.4 Infinite IDTs.- References.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |