Superconducting Magnet Systems

Author:   H. Brechna
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Volume:   18
ISBN:  

9783540061038


Pages:   602
Publication Date:   13 July 1973
Format:   Hardback
Availability:   Out of stock   Availability explained


Our Price $290.40 Quantity:  
Add to Cart

Share |

Superconducting Magnet Systems


Add your own review!

Overview

Full Product Details

Author:   H. Brechna
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Volume:   18
Weight:   1.160kg
ISBN:  

9783540061038


ISBN 10:   3540061037
Pages:   602
Publication Date:   13 July 1973
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Out of Print
Availability:   Out of stock   Availability explained

Table of Contents

1. Methods of Magnetic Field Generation.- 1.1 High Magnetic Field Laboratories.- 1.2 Conventional Continuous Duty Magnets with and without Iron.- 1.3 Pulsed Magnets.- 1.4 Cryogenic Magnets.- 1.5 Superconducting Coils.- References.- 2. Magnetic Field Calculations.- 2.1 Magnets without Ferromagnetic Yokes.- 2.1.1 Magnetic Fields due to Current Elements.- 2.1.2 Fields due to Filamentary Current Lines.- 2.1.3 Field Corrections.- 2.1.4 Applications.- 2.1.4.1 Circular Current Filament.- 2.1.4.2 Elliptical Conductor.- 2.1.4.3 Dipole Field.- 2.1.4.4 Quadrupole Field.- 2.1.5 Magnetic Field Calculation by Means of Current Sheets.- 2.1.6 Magnetic Field of Cylindrical Coils.- 2.1.6.1 Use of Spherical Harmonics, Axially-Symmetric Coils.- 2.1.7 Magnetic Field of Non-Cylindrical Coils.- 2.1.8 Fields Produced by Means of Distributed Parallel Conductors.- 2.1.8.1 Multipole Coils with Circular Aperture.- 2.1.9 Multipole Coils with Rectangular Aperture.- 2.2 Magnetic Fields due to Coils in Proximity to Ferromagnetic-Materials.- 2.2.1 Introduction.- 2.2.2 Direct Current Magnetization Curves.- 2.2.3 Difference Equations.- 2.2.4 The Grid System.- 2.2.5 Field Intensity in Rectangular Coordinates.- 2.2.6 Finite Difference Equations in Cylindrical Coordinates.- 2.2.7 Field Intensity in Cylindrical Coordinates.- 2.2.8 Field Problem as a Set of Simultaneous Equations.- 2.2.9 Boundaries with Different Permeabilities.- 2.2.10 Right-Angle Boundary with Different Permeabilities on Each Side.- 2.2.11 Curved Boundaries.- 2.2.12 General Boundary Condition.- 2.2.13 Solution of Difference Equations.- 2.2.14 Concept of Residuals.- 2.2.15 A Computational Method.- 2.2.16 The Iron-Air Interface.- 2.2.17 Examples and Results of Numerical Computations.- 2.2.17.1 Superconducting Dipole Magnets.- 2.2.17.2 Superconducting Quadrupole Magnet.- 2.2.17.3 Axially-Symmetric Magnets.- 2.2.17.4 General.- 2.3 Field Calculation of Iron-Bound Air-Core Magnets.- 2.3.1 Current Sheet.- 2.3.2 Coils of Finite Thickness.- 2.3.3 Special Cases.- 2.3.4 The Coil Ampere-Turns.- 2.3.5 The Magnetic Vector Potential.- 2.3.6 The Inner Radius of the Iron Shield.- 2.3.7 Iron Radial Thickness.- 2.3.8 Stored Energy.- 2.3.9 Magnetic Fields due to Axially-Symmetric Iron Distribution.- 2.4 Calculation of Forces.- 2.4.1 Forces due to Coil-Winding.- 2.4.2 Forces due to Thermal Contraction.- 2.4.3 Magnetomechanical Forces Fm.- 2.4.4 Magnetomechanical Forces due to Winding Pretension.- 2.4.5 Magnetomechanical Forces in Cylindrical Geometrics.- 2.4.6 Stresses due to Thermal Contraction.- 2.4.7 Forces for a Dipole Coil Configuration.- 2.4.8 Force Equations for Multipole Coils.- 2.4.9 Forces in Spherical Coils.- 2.4.10 Forces in Toroidal Coils.- 2.5 Calculation of Heating.- References.- 3. Phenomena and Theory of Superconductivity.- 3.1 Theory.- 3.1.1 Introduction.- 3.1.2 Free Electron Theory.- 3.1.3 Zero Field Properties of a BCS Superconductor.- 3.1.4 Superconductors in an Applied Field.- 3.1.5 Type II Superconductors.- 3.1.6 Summary of Free-Electron, BCS and GLAG Formulae.- 3.2 Critical Fields of Type II Superconductors.- 3.2.1 Introduction.- 3.2.2 Magnetostatics and Thermodynamics of Type I Superconductors.- 3.2.3 Intermediate State of Type I Superconductors.- 3.2.4 The Mixed State of Type II Superconductors.- 3.2.5 Exact Theories of the Mixed State.- 3.2.6 Paramagnetic and Impurity Effects on Hc2.- 3.2.7 Critical Fields of intermetallic Compounds.- 3.2.8 Surface Superconductivity.- 3.3 Critical Currents of Type II Superconductors.- 3.3.1 Introduction.- 3.3.2 Forces on Flux Lines.- 3.3.3 Flux Flow.- 3.3.4 Thermally Activated Flux Creep.- 3.3.4.1 Thermally Activated Flux Creep.- 3.3.4.2 Calculation of the Effective Density of Vortex Pinning Sites.- 3.3.4.3 Nature of Vortex Pinning Sites.- 3.3.5 Low Temperature Experimental Results on the Field and Defect Dependence of the Critical Current Density.- 3.3.5.1 High Field Materials.- 3.3.5.2 Low Field Materials.- 3.3.5.3 Other Low Temperature Effects.- 3.3.6 Kim Anderson Theory at Finite Temperatures.- 3.3.7 A.C. Effects.- 3.3.8 Conclusions.- References.- 4. Superconducting Alternating Current Magnets.- 4.1 Alternating Current Losses.- 4.1.1 Introduction.- 4.1.2 Flux Profiles.- 4.1.3 Thin Superconducting Tapes and Filaments.- 4.1.4 Finite Size Slabs and Cylindrical Conductors Located in a Transverse External Field.- 4.1.5 Methods of Calculating Hysteretic Losses due to Alternating Fields.- 4.1.6 Hysteretic Losses in Slabs.- 4.1.7 Application to Multifilamentary Conductors.- 4.1.8 Hysteretic Losses in Cylindrical Shaped Superconductors.- 4.1.9 Hysteretic Losses in Coils Using Hollow Superconducting Filaments.- 4.1.10 Losses in Composites.- 4.1.11 Eddy Current Losses in the Conductor Matrix.- 4.1.12 Self Field Losses.- 4.1.13 Contribution of External Fields.- 4.1.14 Discussion.- 4.1.15 Comparison between Self-Field and Hysteretic Losses.- 4.1.16 Modification of the Hysteretic Losses, if the Transport Current is not Zero.- 4.2 Additional Effects in Twisted Multifilamentary Conductors.- 4.2.1 Axial Diffusion of the Self Field.- 4.2.2 Solution of I (r, z, t).- 4.2.3 Extension of the Self Field Model in Twisted Multi-Filament Conductors.- 4.3 Eddy Current Losses in Metallic Parts.- 4.3.1 Iron Losses in the Flux Return Path.- 4.3.2 Eddy Current Losses in the Metallic Cryostat.- 4.4 Multifilamentary Conductors.- 4.4.1 Cables and Braids.- 4.5 Comparison of Loss-Calculation with Experiments.- 4.6 Methods of Loss Measurement.- 4.6.1 Calorimetric Method.- 4.6.2 Electric Methods.- 4.7 Magnetic and Thermal Instabilities.- 4.7.1 Introduction.- 4.7.2 Diffusion Equations.- 4.7.2.1 Magnetic Diffusivity.- 4.7.2.2 Thermal Diffusivity.- 4.7.3 Stability.- 4.7.3.1 Temperature Rise from Fluxjump.- 4.7.3.2 Adiabatic Stability.- 4.7.3.3 Dynamic Stability.- 4.7.3.4 Steady State Stability.- 4.8 A.C. Magnet Fabrication Techniques.- 4.8.1 Coil Fabrication.- 4.8.2 Electrical-Design.- 4.8.2.1 Current Leads.- 4.8.2.2 Superconductor to Lead Joints.- 4.8.3.1 Transient Voltages in Coils due to Quenches.- 4.9 Irradiation Effects in Superconducting Magnets.- 4.9.1 Introduction.- 4.9.2 Energy Loss by Collisions.- 4.9.3 Irradiation Effects on Type II Superconductors.- 4.9.4 Irradiation Effects on Normal Metals.- 4.9.5 Irradiation Effects on Magnet Insulations and Reinforcements.- 4.9.6 Irradiation Effects on Helium.- References.- 5. Cryogenics.- 5.1 General Properties of Cryogenic Fluids.- 5.1.1 Availability and Production.- 5.2 Low Temperature Processes.- 5.2.1 Handling Cryogenic Fluids.- 5.2.1.1 Safety Precautions.- 5.2.2 Transferring Cryogenic Fluids.- 5.2.3 Liquid Level Measurement.- 5.2.3.1 Introduction.- 5.2.3.2 Methods of Level Measurement.- 5.3 Liquefaction and Refrigeration.- 5.3.1 Basic Principles, Reversible Cycles.- 5.3.2 Efficiency of Real Cycles.- 5.3.3 Non-Isothermal Refrigeration.- 5.3.4 Practical Refrigerators.- 5.3.5 Liquefiers.- 5.3.6 Real Liquefiers.- 5.4 Handling and Storage of Cryogenic Fluids.- 5.5 Physical Properties of Cryogenic Fluids.- 5.5.1 Helium.- 5.5.2 Hydrogen.- 5.5.3 Nitrogen.- 5.6 Physical Properties of Solids.- 5.6.1 Introduction.- 5.6.2 Mechanical Properties of Solids.- 5.6.2.1 Stress-Creep Relation.- 5.6.2.2 Stress-Strain Relation.- 5.6.2.3 Fatigue.- 5.6.3 The Work of Fracture.- 5.6.4 Thermal and Transport Properties of Solids.- 5.7 Heat Losses.- 5.7.1 Heat Conduction.- 5.7.2 Convection.- 5.7.3 Radiation.- 5.7.4 Methods to Minimize Thermal Losses.- 5.7.5 Application.- References.- 6. Economic Consideration in the Design of Water-Cooled, Cryogenic and Superconducting Magnets.- 6.1 Introduction.- 6.2 Cost Comparison for Specific Magnet Systems.- 6.2.1 Solenoids and Split Coils.- 6.2.2 Water-Cooled Solenoids with Uniform Current Density Distribution.- 6.2.3 Cryogenic Magnets with Uniform Current Density Distribution.- 6.2.4 Superconducting Magnets.- 6.2.5 Operating Cost of Superconducting Coils.- 6.2.6 Long Solenoids.- 6.2.7 Magnets for Energy Storage.- 6.2.8 Beam Transport and Accelerator Magnets.- 6.3 Cost Comparison in General.- References.- 7. Examples of Superconducting Magnet Systems.- 7.1 The Argonne National Laboratory 3.7-m Hydrogen Bubble-Chamber Magnet.- 7.2 The CERN Liquid Hydrogen Bubble-Chamber Magnet.- 7.3 Composite Magnet System, the McGill and MIT Hybrid Magnets.- 7.4 The Oak-Ridge -IMP -Superconducting Coil System.- 7.5 The SLAC 7 T, 30-cm Bore, Helmholtz Magnet.- References.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

lgn

al

Shopping Cart
Your cart is empty
Shopping cart
Mailing List