|
|
|||
|
||||
OverviewFull Product DetailsAuthor: H. BrechnaPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Volume: 18 Weight: 1.160kg ISBN: 9783540061038ISBN 10: 3540061037 Pages: 602 Publication Date: 13 July 1973 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Out of Print Availability: Out of stock Table of Contents1. Methods of Magnetic Field Generation.- 1.1 High Magnetic Field Laboratories.- 1.2 Conventional Continuous Duty Magnets with and without Iron.- 1.3 Pulsed Magnets.- 1.4 Cryogenic Magnets.- 1.5 Superconducting Coils.- References.- 2. Magnetic Field Calculations.- 2.1 Magnets without Ferromagnetic Yokes.- 2.1.1 Magnetic Fields due to Current Elements.- 2.1.2 Fields due to Filamentary Current Lines.- 2.1.3 Field Corrections.- 2.1.4 Applications.- 2.1.4.1 Circular Current Filament.- 2.1.4.2 Elliptical Conductor.- 2.1.4.3 Dipole Field.- 2.1.4.4 Quadrupole Field.- 2.1.5 Magnetic Field Calculation by Means of Current Sheets.- 2.1.6 Magnetic Field of Cylindrical Coils.- 2.1.6.1 Use of Spherical Harmonics, Axially-Symmetric Coils.- 2.1.7 Magnetic Field of Non-Cylindrical Coils.- 2.1.8 Fields Produced by Means of Distributed Parallel Conductors.- 2.1.8.1 Multipole Coils with Circular Aperture.- 2.1.9 Multipole Coils with Rectangular Aperture.- 2.2 Magnetic Fields due to Coils in Proximity to Ferromagnetic-Materials.- 2.2.1 Introduction.- 2.2.2 Direct Current Magnetization Curves.- 2.2.3 Difference Equations.- 2.2.4 The Grid System.- 2.2.5 Field Intensity in Rectangular Coordinates.- 2.2.6 Finite Difference Equations in Cylindrical Coordinates.- 2.2.7 Field Intensity in Cylindrical Coordinates.- 2.2.8 Field Problem as a Set of Simultaneous Equations.- 2.2.9 Boundaries with Different Permeabilities.- 2.2.10 Right-Angle Boundary with Different Permeabilities on Each Side.- 2.2.11 Curved Boundaries.- 2.2.12 General Boundary Condition.- 2.2.13 Solution of Difference Equations.- 2.2.14 Concept of Residuals.- 2.2.15 A Computational Method.- 2.2.16 The Iron-Air Interface.- 2.2.17 Examples and Results of Numerical Computations.- 2.2.17.1 Superconducting Dipole Magnets.- 2.2.17.2 Superconducting Quadrupole Magnet.- 2.2.17.3 Axially-Symmetric Magnets.- 2.2.17.4 General.- 2.3 Field Calculation of Iron-Bound Air-Core Magnets.- 2.3.1 Current Sheet.- 2.3.2 Coils of Finite Thickness.- 2.3.3 Special Cases.- 2.3.4 The Coil Ampere-Turns.- 2.3.5 The Magnetic Vector Potential.- 2.3.6 The Inner Radius of the Iron Shield.- 2.3.7 Iron Radial Thickness.- 2.3.8 Stored Energy.- 2.3.9 Magnetic Fields due to Axially-Symmetric Iron Distribution.- 2.4 Calculation of Forces.- 2.4.1 Forces due to Coil-Winding.- 2.4.2 Forces due to Thermal Contraction.- 2.4.3 Magnetomechanical Forces Fm.- 2.4.4 Magnetomechanical Forces due to Winding Pretension.- 2.4.5 Magnetomechanical Forces in Cylindrical Geometrics.- 2.4.6 Stresses due to Thermal Contraction.- 2.4.7 Forces for a Dipole Coil Configuration.- 2.4.8 Force Equations for Multipole Coils.- 2.4.9 Forces in Spherical Coils.- 2.4.10 Forces in Toroidal Coils.- 2.5 Calculation of Heating.- References.- 3. Phenomena and Theory of Superconductivity.- 3.1 Theory.- 3.1.1 Introduction.- 3.1.2 Free Electron Theory.- 3.1.3 Zero Field Properties of a BCS Superconductor.- 3.1.4 Superconductors in an Applied Field.- 3.1.5 Type II Superconductors.- 3.1.6 Summary of Free-Electron, BCS and GLAG Formulae.- 3.2 Critical Fields of Type II Superconductors.- 3.2.1 Introduction.- 3.2.2 Magnetostatics and Thermodynamics of Type I Superconductors.- 3.2.3 Intermediate State of Type I Superconductors.- 3.2.4 The Mixed State of Type II Superconductors.- 3.2.5 Exact Theories of the Mixed State.- 3.2.6 Paramagnetic and Impurity Effects on Hc2.- 3.2.7 Critical Fields of intermetallic Compounds.- 3.2.8 Surface Superconductivity.- 3.3 Critical Currents of Type II Superconductors.- 3.3.1 Introduction.- 3.3.2 Forces on Flux Lines.- 3.3.3 Flux Flow.- 3.3.4 Thermally Activated Flux Creep.- 3.3.4.1 Thermally Activated Flux Creep.- 3.3.4.2 Calculation of the Effective Density of Vortex Pinning Sites.- 3.3.4.3 Nature of Vortex Pinning Sites.- 3.3.5 Low Temperature Experimental Results on the Field and Defect Dependence of the Critical Current Density.- 3.3.5.1 High Field Materials.- 3.3.5.2 Low Field Materials.- 3.3.5.3 Other Low Temperature Effects.- 3.3.6 Kim Anderson Theory at Finite Temperatures.- 3.3.7 A.C. Effects.- 3.3.8 Conclusions.- References.- 4. Superconducting Alternating Current Magnets.- 4.1 Alternating Current Losses.- 4.1.1 Introduction.- 4.1.2 Flux Profiles.- 4.1.3 Thin Superconducting Tapes and Filaments.- 4.1.4 Finite Size Slabs and Cylindrical Conductors Located in a Transverse External Field.- 4.1.5 Methods of Calculating Hysteretic Losses due to Alternating Fields.- 4.1.6 Hysteretic Losses in Slabs.- 4.1.7 Application to Multifilamentary Conductors.- 4.1.8 Hysteretic Losses in Cylindrical Shaped Superconductors.- 4.1.9 Hysteretic Losses in Coils Using Hollow Superconducting Filaments.- 4.1.10 Losses in Composites.- 4.1.11 Eddy Current Losses in the Conductor Matrix.- 4.1.12 Self Field Losses.- 4.1.13 Contribution of External Fields.- 4.1.14 Discussion.- 4.1.15 Comparison between Self-Field and Hysteretic Losses.- 4.1.16 Modification of the Hysteretic Losses, if the Transport Current is not Zero.- 4.2 Additional Effects in Twisted Multifilamentary Conductors.- 4.2.1 Axial Diffusion of the Self Field.- 4.2.2 Solution of I (r, z, t).- 4.2.3 Extension of the Self Field Model in Twisted Multi-Filament Conductors.- 4.3 Eddy Current Losses in Metallic Parts.- 4.3.1 Iron Losses in the Flux Return Path.- 4.3.2 Eddy Current Losses in the Metallic Cryostat.- 4.4 Multifilamentary Conductors.- 4.4.1 Cables and Braids.- 4.5 Comparison of Loss-Calculation with Experiments.- 4.6 Methods of Loss Measurement.- 4.6.1 Calorimetric Method.- 4.6.2 Electric Methods.- 4.7 Magnetic and Thermal Instabilities.- 4.7.1 Introduction.- 4.7.2 Diffusion Equations.- 4.7.2.1 Magnetic Diffusivity.- 4.7.2.2 Thermal Diffusivity.- 4.7.3 Stability.- 4.7.3.1 Temperature Rise from Fluxjump.- 4.7.3.2 Adiabatic Stability.- 4.7.3.3 Dynamic Stability.- 4.7.3.4 Steady State Stability.- 4.8 A.C. Magnet Fabrication Techniques.- 4.8.1 Coil Fabrication.- 4.8.2 Electrical-Design.- 4.8.2.1 Current Leads.- 4.8.2.2 Superconductor to Lead Joints.- 4.8.3.1 Transient Voltages in Coils due to Quenches.- 4.9 Irradiation Effects in Superconducting Magnets.- 4.9.1 Introduction.- 4.9.2 Energy Loss by Collisions.- 4.9.3 Irradiation Effects on Type II Superconductors.- 4.9.4 Irradiation Effects on Normal Metals.- 4.9.5 Irradiation Effects on Magnet Insulations and Reinforcements.- 4.9.6 Irradiation Effects on Helium.- References.- 5. Cryogenics.- 5.1 General Properties of Cryogenic Fluids.- 5.1.1 Availability and Production.- 5.2 Low Temperature Processes.- 5.2.1 Handling Cryogenic Fluids.- 5.2.1.1 Safety Precautions.- 5.2.2 Transferring Cryogenic Fluids.- 5.2.3 Liquid Level Measurement.- 5.2.3.1 Introduction.- 5.2.3.2 Methods of Level Measurement.- 5.3 Liquefaction and Refrigeration.- 5.3.1 Basic Principles, Reversible Cycles.- 5.3.2 Efficiency of Real Cycles.- 5.3.3 Non-Isothermal Refrigeration.- 5.3.4 Practical Refrigerators.- 5.3.5 Liquefiers.- 5.3.6 Real Liquefiers.- 5.4 Handling and Storage of Cryogenic Fluids.- 5.5 Physical Properties of Cryogenic Fluids.- 5.5.1 Helium.- 5.5.2 Hydrogen.- 5.5.3 Nitrogen.- 5.6 Physical Properties of Solids.- 5.6.1 Introduction.- 5.6.2 Mechanical Properties of Solids.- 5.6.2.1 Stress-Creep Relation.- 5.6.2.2 Stress-Strain Relation.- 5.6.2.3 Fatigue.- 5.6.3 The Work of Fracture.- 5.6.4 Thermal and Transport Properties of Solids.- 5.7 Heat Losses.- 5.7.1 Heat Conduction.- 5.7.2 Convection.- 5.7.3 Radiation.- 5.7.4 Methods to Minimize Thermal Losses.- 5.7.5 Application.- References.- 6. Economic Consideration in the Design of Water-Cooled, Cryogenic and Superconducting Magnets.- 6.1 Introduction.- 6.2 Cost Comparison for Specific Magnet Systems.- 6.2.1 Solenoids and Split Coils.- 6.2.2 Water-Cooled Solenoids with Uniform Current Density Distribution.- 6.2.3 Cryogenic Magnets with Uniform Current Density Distribution.- 6.2.4 Superconducting Magnets.- 6.2.5 Operating Cost of Superconducting Coils.- 6.2.6 Long Solenoids.- 6.2.7 Magnets for Energy Storage.- 6.2.8 Beam Transport and Accelerator Magnets.- 6.3 Cost Comparison in General.- References.- 7. Examples of Superconducting Magnet Systems.- 7.1 The Argonne National Laboratory 3.7-m Hydrogen Bubble-Chamber Magnet.- 7.2 The CERN Liquid Hydrogen Bubble-Chamber Magnet.- 7.3 Composite Magnet System, the McGill and MIT Hybrid Magnets.- 7.4 The Oak-Ridge -IMP -Superconducting Coil System.- 7.5 The SLAC 7 T, 30-cm Bore, Helmholtz Magnet.- References.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |