|
|
|||
|
||||
OverviewStatistical Physics II introduces nonequilibrium theories of statistical mechanics from the viewpoint of the fluctuation-disipation theorem. Emphasis is placed on the relaxation from nonequilibrium to equilibrium states, the response of a system to an external disturbance, and general problems involved in deriving a macroscopic physical process from more basic underlying processes. Fundamental concepts and methods are stressed, rather than the numerous individual applications. Full Product DetailsAuthor: Ryogo Kubo , M. Toda , Morikazu Toda , R. KuboPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 2nd ed. 1991 Volume: 31 Dimensions: Width: 15.50cm , Height: 1.50cm , Length: 23.50cm Weight: 0.940kg ISBN: 9783540538332ISBN 10: 354053833 Pages: 279 Publication Date: 14 November 1991 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents1. Brownian Motion.- 1.1 Brownian Motion as a Stochastic Process.- 1.2 The Central Limit Theorem and Brownian Motion.- 1.3 The Langevin Equation and Harmonic Analysis.- 1.4 Gaussian Processes.- 1.5 Brownian Motion Modeled by a Gaussian Process.- 1.6 The Fluctuation-Dissipation Theorem.- 2. Physical Processes as Stochastic Processes.- 2.1 Random Frequency Modulation.- 2.2 Brownian Motion Revisited.- 2.3 Markovian Processes.- 2.4 Fokker-Planck Equation.- 2.5 Contraction of Information. Projected Processes.- 2.6 Derivation of Master Equations.- 2.7 Brownian Motion of a Quantal System.- 2.8 Boltzmann Equation.- 2.9 Generalized Langevin Equation and the Damping Theory.- 3. Relaxation and Resonance Absorption.- 3.1 Linear Irreversible Processes.- 3.2 Complex Admittance.- 3.3 Debye Relaxation.- 3.4 Resonance Absorption.- 3.5 Wave Number-Dependent Complex Admittance.- 3.6 Dispersion Relations.- 3.7 Sum Rules and Interpolation Formulas.- 4. Statistical Mechanics of Linear Response.- 4.1 Static Response to External Force.- 4.2 Dynamic Response to External Force.- 4.3 Symmetry and the Dispersion Relations.- 4.4 Fluctuation and Dissipation Theorem.- 4.5 Density Response, Conduction and Diffusion.- 4.6 Response to Thermal Internal Forces.- 4.7 Some Remarks on the Linear-Response Theory.- 5. Quantum Field Theoretical Methods in Statistical Mechanics.- 5.1 Double-Time Green’s Functions.- 5.2 Chain of Equations of Motion and the Decoupling Approximation.- 5.3 Relation to the Kinetic Equation.- 5.4 Single-Particle Green’s Function and the Causal Green’s Function.- 5.5 Basic Formula for Perturbational Expansion.- 5.6 Temperature Green’s function.- 5.7 Diagram Technique.- 5.8 Dyson Equation.- 5.9 Relationship Between the Thermodynamic Potential and the Temperature Green’sFunction.- 5.10 Special Case of the Two-Particle Green’s function.- General Bibliography of Textbooks.- References.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |