|
|
|||
|
||||
OverviewSemiconducting nanomaterials are a class of materials that exhibit unique properties and have garnered much interest in recent years due to their potential for use in various applications, including photocatalysis. Photocatalysis involves using light energy to drive chemical reactions, and semiconducting nanomaterials are particularly attractive for this purpose due to their ability to efficiently absorb light and generate reactive species. There are many different types of semiconducting nanomaterials that have been studied for photocatalytic applications, including metal oxides such as titanium dioxide (TiO2), zinc oxide (ZnO), and iron oxide (Fe2O3), as well as semiconductor nanocrystals such as quantum dots and nanowires. In photocatalytic applications, semiconducting nanomaterials are typically immobilized onto a substrate or suspended in a liquid or gas phase. When light is absorbed by the nanomaterial, it can generate electron-hole pairs that can then participate in redox reactions with adsorbed species or in the surrounding environment. This can lead to the production of reactive species such as superoxide and hydroxyl radicals, which can be used to degrade pollutants or perform other useful chemical transformations. The properties of semiconducting nanomaterials can be tuned by controlling their size, shape, and composition, which can affect their absorption spectra, surface area, and chemical reactivity. This has led to the development of a wide range of semiconducting nanomaterials with tailored properties for specific photocatalytic applications. Semiconducting nanomaterials show great promise for use in photocatalytic applications, and ongoing research is focused on developing new materials and improving their performance and stability for practical applications in areas such as water purification, air pollution control, and renewable energy production. Semiconductor metal oxide nanomaterials play a pivotal role in enormous areas of energy associated activities such as photocatalysis, gas sensors, water splittin, solar cells, optoelectronics etc. In this present scenario, the increase in consumption of non-renewable energy resources poses a serious threat to humankind's adverse effects on the environment. An effective solution to this problem is finding out materials that can efficiently utilize solar energy. One such material is semiconductor metal oxide nanomaterials. Researchers are constantly trying to design advanced semiconducting metal oxide nanomaterials with multifaceted application cost-effectively and straightforward. Semiconductor metal oxide nanomaterials such as TiO₂, ZnO, CeO₂, Bi₂O₃ etc., are important in the field of solar energy utilization; the major bottleneck in their utilization is the absorption range ie.; Their absorption from the UV region has to be shifted to the visible spectrum, then only efficient utilization of sunlight occurs. Full Product DetailsAuthor: Sajith N VPublisher: Sajith N.V Imprint: Sajith N.V Dimensions: Width: 15.20cm , Height: 0.80cm , Length: 22.90cm Weight: 0.204kg ISBN: 9783263544085ISBN 10: 326354408 Pages: 146 Publication Date: 12 March 2023 Audience: General/trade , General Format: Paperback Publisher's Status: Active Availability: Temporarily unavailable The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |