|
|
|||
|
||||
OverviewSecure data science, which integrates cyber security and data science, is becoming one of the critical areas in both cyber security and data science. This is because the novel data science techniques being developed have applications in solving such cyber security problems as intrusion detection, malware analysis, and insider threat detection. However, the data science techniques being applied not only for cyber security but also for every application area—including healthcare, finance, manufacturing, and marketing—could be attacked by malware. Furthermore, due to the power of data science, it is now possible to infer highly private and sensitive information from public data, which could result in the violation of individual privacy. This is the first such book that provides a comprehensive overview of integrating both cyber security and data science and discusses both theory and practice in secure data science. After an overview of security and privacy for big data services as well as cloud computing, this book describes applications of data science for cyber security applications. It also discusses such applications of data science as malware analysis and insider threat detection. Then this book addresses trends in adversarial machine learning and provides solutions to the attacks on the data science techniques. In particular, it discusses some emerging trends in carrying out trustworthy analytics so that the analytics techniques can be secured against malicious attacks. Then it focuses on the privacy threats due to the collection of massive amounts of data and potential solutions. Following a discussion on the integration of services computing, including cloud-based services for secure data science, it looks at applications of secure data science to information sharing and social media. This book is a useful resource for researchers, software developers, educators, and managers who want to understand both the high level concepts and the technical details on the design and implementation of secure data science-based systems. It can also be used as a reference book for a graduate course in secure data science. Furthermore, this book provides numerous references that would be helpful for the reader to get more details about secure data science. Full Product DetailsAuthor: Bhavani Thuraisingham , Murat Kantarcioglu , Latifur Khan (University of Texas at Dallas, Richardson, Texas, USA)Publisher: Taylor & Francis Ltd Imprint: CRC Press Weight: 0.843kg ISBN: 9781032212579ISBN 10: 1032212578 Pages: 436 Publication Date: 04 October 2024 Audience: Professional and scholarly , College/higher education , Professional & Vocational , Postgraduate, Research & Scholarly Format: Paperback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsAuthor InformationDr. Bhavani Thuraisingham is the Louis A. Beecherl, Jr. Distinguished Professor of Computer Science and the Executive Director of the Cyber Security Research and Education Institute (CSI) at the University of Texas at Dallas.Dr. Latifur R. Khan is currently an Associate Professor in computer science at at the University of Texas at Dallas.Dr. Murat Kantarcioglu is Professor of Computer Science and Director of the University of Texas at Dallas Data Security and Privacy Lab. His research focuses on creating technologies that can efficiently extract useful information from any data without sacrificing privacy or security. Recently, he has been working on security and privacy issues raised by data mining, privacy issues in social networks, security issues in databases, privacy issues in health care, applied cryptography for data security, risk and incentive issues in assured information sharing, use of data mining for fraud detection, botnet detection and homeland security. Tab Content 6Author Website:Countries AvailableAll regions |