|
|
|||
|
||||
OverviewFull Product DetailsAuthor: Nikolaos XirosPublisher: Springer London Ltd Imprint: Springer London Ltd Edition: Softcover reprint of the original 1st ed. 2002 Dimensions: Width: 15.50cm , Height: 1.20cm , Length: 23.50cm Weight: 0.367kg ISBN: 9781447111023ISBN 10: 1447111028 Pages: 214 Publication Date: 14 September 2012 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand We will order this item for you from a manufactured on demand supplier. Table of Contents1 Introduction.- 1.1 The Marine Diesel Propulsion System.- 1.2 Contribution of this Work.- 2 Marine Engine Thermodynamies.- 2.1 Physical Engine Modelling.- 2.2 Turbocharged Engine Model Variables.- 2.3 Turbocharged Engine Dynamical Equations.- 2.4 Turbocharged Engine Algebraic Equations.- 2.5 Cycle-mean Model Summary and Solution Procedure.- 2.6 Summary.- 3 Marine Plant Empirical Transfer Function.- 3.1 Black-box Engine Modelling.- 3.2 Shafting System Dynamical Analysis.- 3.3 The Plant Transfer Function.- 3.4 Summary.- 4 Robust PID Control of the Marine Plant.- 4.1 Introduction.- 4.2 Application Aspects of Marine Engine Goveming.- 4.3 PID H-infinity Loop Shaping.- 4.4 PI and PID H-infinity Regulation of Shaft RPM.- 4.5 D-term Implementation Using Shaft Torque Feedback.- 4.6 Summary.- 5 State-space Description of the Marine Plant.- 5.1 Introduction.- 5.2 The Neural Torque Approximators.- 5.3 State Equations of the Marine Plant.- 5.4 State-space Decomposition and Uncertainty.- 5.5 Transfer Function Matrix of the Marine Plant.- 5.6 Summary.- 6 Marine Plant Robust State-feedback Control.- 6.1 Introduction.- 6.2 Supervisory Setpoint Control of the Marine Plant.- 6.3 Full-state-feedback Control of the Marine Plant.- 6.4 State-feedback and Integral Control of the Marine Plant.- 6.5 Summary.- 7 Closure.- 7.1 Conclusions and Discussion.- 7.2 Subjects for Future Investigations and Research.- Appendix A Non-linear Aigebraic Systems of Equations.- Appendix B Second-order Transfer Function with Zero.- References.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |