Practical Low Power Digital VLSI Design

Author:   Gary K. Yeap
Publisher:   Springer
Edition:   1998 ed.
ISBN:  

9780792380092


Pages:   212
Publication Date:   31 August 1997
Format:   Hardback
Availability:   Out of print, replaced by POD   Availability explained
We will order this item for you from a manufatured on demand supplier.

Our Price $572.88 Quantity:  
Add to Cart

Share |

Practical Low Power Digital VLSI Design


Add your own review!

Overview

This text emphasizes the optimization and trade-off techniques that involve power dissipation, in the hope that readers will be better prepared the next time they are presented with a low power design problem. The book highlights the basic principles, methodologies and techniques that are common to most CMOS digital designs. The advantages and disadvantages of a particular low power technique are discussed. Besides the classical area-performance trade-off, the impact to design cycle time, complexity, risk, testability and reusability are discussed. The wide impacts to all aspects of design are what make low power problems challenging and interesting. Heavy emphasis is given to top-down structured design style, with occasional coverage in the semicustom design methodology. The examples and design techniques cited have been known to be applied to production scale designs or laboratory settings. The goal of the book is to permit the readers to practice the low power techniques using current generation design style and process technology. The text considers a wide range of design abstraction levels spanning circuit, logic, architecture and system. Substantial basic knowledge is provided for qualitative and quantitative analysis at the different design abstraction levels. Low power techniques are presented at the circuit, logic, architecture and system levels. Special techniques that are specific to some key areas of digital chip design are discussed as well as some of the low power techniques that are just appearing on the horizon.

Full Product Details

Author:   Gary K. Yeap
Publisher:   Springer
Imprint:   Springer
Edition:   1998 ed.
Dimensions:   Width: 15.50cm , Height: 1.40cm , Length: 23.50cm
Weight:   1.110kg
ISBN:  

9780792380092


ISBN 10:   0792380096
Pages:   212
Publication Date:   31 August 1997
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Hardback
Publisher's Status:   Active
Availability:   Out of print, replaced by POD   Availability explained
We will order this item for you from a manufatured on demand supplier.

Table of Contents

1 Introduction.- 1.1 Needs for Low Power VLSI Chips.- 1.2 Charging and Discharging Capacitance.- 1.3 Short-circuit Current in CMOS Circuit.- 1.4 CMOS Leakage Current.- 1.5 Static Current.- 1.6 Basic Principles of Low Power Design.- 1.7 Low Power Figure of Merits.- 2 Simulation Power Analysis.- 2.1 SPICE Circuit Simulation.- 2.2 Discrete Transistor Modeling and Analysis.- 2.3 Gate-level Logic Simulation.- 2.4 Architecture-level Analysis.- 2.5 Data Correlation Analysis in DSP Systems.- 2.6 Monte Carlo Simulation.- 3 Probabilistic Power Analysis.- 3.1 Random Logic Signals.- 3.2 Probability and Frequency.- 3.3 Probabilistic Power Analysis Techniques.- 3.4 Signal Entropy.- 4 Circuit.- 4.1 Transistor and Gate Sizing.- 4.2 Equivalent Pin Ordering.- 4.3 Network Restructuring and Reorganization.- 4.4 Special Latches and Flip-flops.- 4.5 Low Power Digital Cell Library.- 4.6 Adjustable Device Threshold Voltage.- 5 Logic.- 5.1 Gate Reorganization.- 5.2 Signal Gating.- 5.3 Logic Encoding.- 5.4 State Machine Encoding.- 5.5 Precomputation Logic.- 6 Special Techniques.- 6.1 Power Reduction in Clock Networks.- 6.2 CMOS Floating Node.- 6.3 Low Power Bus.- 6.4 Delay Balancing.- 6.5 Low Power Techniques for SRAM.- 7 Architecture and System.- 7.1 Power and Performance Management.- 7.2 Switching Activity Reduction.- 7.3 Parallel Architecture with Voltage Reduction.- 7.4 Flow Graph Transformation.- 8 Advanced Techniques.- 8.1 Adiabatic Computation.- 8.2 Pass Transistor Logic Synthesis.- 8.3 Asynchronous Circuits.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

lgn

al

Shopping Cart
Your cart is empty
Shopping cart
Mailing List