|
|
|||
|
||||
OverviewThis multi-authored book provides a comprehensive overview of the latest developments in porous CO2 capture materials, including ionic liquid–derived carbonaceous adsorbents, porous carbons, metal-organic frameworks, porous aromatic frameworks, micro porous organic polymers. It also reviews the sorption techniques such as cyclic uptake and desorption reactions and membrane separations. In each category, the design and fabrication, the comprehensive characterization, the evaluation of CO2 sorption/separation and the sorption/degradation mechanism are highlighted. In addition, the advantages and remaining challenges as well as future perspectives for each porous material are covered. This book is aimed at scientists and graduate students in such fields as separation, carbon, polymer, chemistry, material science and technology, who will use and appreciate this information source in their research. Other specialists may consult specific chapters to find the latest, authoritative reviews. Dr. An-Hui Lu is a Professor at the State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, China. Dr. Sheng Dai is a Corporate Fellow and Group Leader in the Chemical Sciences Division at Oak Ridge National Laboratory (ORNL) and a Professor of Chemistry at the University of Tennessee, USA. Full Product DetailsAuthor: An-Hui Lu , Sheng DaiPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 2014 ed. Dimensions: Width: 15.50cm , Height: 2.00cm , Length: 23.50cm Weight: 5.089kg ISBN: 9783642546457ISBN 10: 3642546455 Pages: 245 Publication Date: 05 May 2014 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Manufactured on demand We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsAuthor InformationAn-Hui Lu received his Ph.D. from the Institute of Coal Chemistry, Chinese Academy of Sciences in 2001. He subsequently went to Germany and worked as a Postdoctoral fellow and Alexander von Humboldt fellow in the group of Prof. F. Schüth at the Max-Planck-Institute für Kohlenforschung. In 2005, he was promoted to Group Leader at the same institute. He has been a Professor at the State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology since 2008. He received the Brian Kelly Award (2006), Award for New Century Excellent Talents of Ministry of Education, China (2009), and the National Science Fund for Distinguished Young Scholars of China (2012). He is the author or co-author of more than 100 papers with over 4,000 citations, and of one book. His research interests include synthesis strategy innovation of porous carbon materials, nanostructured energy-related materials, multifunctional magnetic colloids and their applications in heterogeneous catalysis, adsorption, energy storage and conversion. Sheng Dai obtained his B.S. degree (1984) and M.S. degree (1986) in Chemistry at Zhejiang University, Hangzhou, China. He moved to the United States in 1986 and obtained his Ph.D. (1990) in Physical Chemistry at the University of Tennessee, Knoxville, under the direction of Prof. T. F. Williams. He started his research career at Oak Ridge National Laboratory (ORNL) as a Postdoctoral Fellow under the joint supervision of Dr. J. P. Young and Prof. G. Mamantov in the field of molten salts and high-temperature spectroscopy. He is currently a Corporate Fellow and Group Leader in the Chemical Sciences Division at ORNL and a Professor of Chemistry at the University of Tennessee. He has published over 400 peer-reviewed journal papers with over 14,000 citations and an h-index of 60, and holds 14 U.S. patents. His current research interests includeionic liquids, porous carbon and oxide materials, nanoparticles, advanced materials and their applications for energy storage, as well as catalysis using nanomaterials. Tab Content 6Author Website:Countries AvailableAll regions |