|
|
|||
|
||||
OverviewThe ability to engineer the bandstructure and the wavefunction over length scales previously inaccessible to technology using artificially structured materials and nanolithography has led to a new class of electron semiconductor devices whose operation is controlled by quantum effects. These structures not only represent exciting tools for investigating new quantum phenomena in semiconductors, but also offer exciting opportunities for applications. This book gives the first comprehensive treatment of the physics of quantum electron devices. This interdisciplinary field, at the junction between material science, physics and technology, has witnessed an explosive growth in recent years. This volume presents a detailed coverage of the physics of the underlying phenomena, and their device and circuit applications, together with fabrication and growth technology. Full Product DetailsAuthor: Federico CapassoPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: Softcover reprint of the original 1st ed. 1990 Volume: 28 Dimensions: Width: 15.50cm , Height: 2.10cm , Length: 23.50cm Weight: 0.639kg ISBN: 9783642747533ISBN 10: 3642747531 Pages: 403 Publication Date: 06 December 2011 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand We will order this item for you from a manufactured on demand supplier. Table of Contents1. Introduction.- 1.1 A Perspective on the Evolution of Quantum Semiconductor Devices.- 1.2 Outline of the Book.- References.- 2. The Nature of Molecular Beam Epitaxy and Consequences for Quantum Microstructures.- 2.1 Dimensional Confinement and Device Concepts.- 2.2 Molecular Beam Epitaxy.- 2.3 The Surface Kinetic Processes and Computer Simulations of Growth.- 2.4 Quantum Wells: Growth and Photoluminescence.- 2.5 Concluding Remarks.- 2.6 Recent Advances.- References.- 3. Nanolithography for Ultra-Small Structure Fabrication.- 3.1 Overview.- 3.2 Resolution Limits of Lithographic Processes.- 3.3 Pattern Transfer.- References.- 4. Theory of Resonant Tunnelling and Surface Superlattices.- 4.1 Tunnelling Probabilities.- 4.2 Tunnelling Time.- 4.3 Pseudo-Device Calculations.- 4.4 Lateral Superlattices.- References.- 5. The Investigation of Single and Double Barrier (Resonant Tunnelling) Heterostructures Using High Magnetic Fields.- 5.1 Background.- 5.2 LO Phonon Structure in the I(V) and C(V) Curves of Reverse-Biased Heterostructures.- 5.3 Magnetotunnelling from the 2D Electron Gas in Accumulated (InGa)As/InP Structures Grown by MBE and MOCVD.- 5.4 Observation of Magnetoquantized Interface States by Electron Tunnelling in Single-Barrier n? (InGa)As/InP/n+ (InGa)As Heterostructures.- 5.5 Box Quantised States.- 5.6 Double Barrier Resonant Tunnelling Devices.- References.- 6. Microwave and Millimeter-Wave Resonant-Tunnelling Devices.- 6.1 Speed of Response.- 6.2 Resonant-Tunnelling Oscillators.- 6.3 Self-Oscillating Mixers.- 6.4 Resistive Multipliers.- 6.5 Variable Absolute Negative Conductance.- 6.6 Persistent Photoconductivity and a Resonant-Tunnelling Transistor.- 6.7 A Look at Resonant-Tunnelling Theory.- 6.8 Concluding Remarks.- Note Added in Proof.- List of Symbols.-References.- 7. Resonant Tunnelling and Superlattice Devices: Physics and Circuits.- 7.1 Resonant Tunnelling Through Double Barriers and Superlattices.- 7.2 Application of Resonant Tunnelling: Transistors and Circuits.- References.- 8. Resonant-Tunnelling Hot Electron Transistors (RHET).- 8.1 RHET Operation.- 8.2 RHET Technology Using GaAs/AlGaAs Heterostructures.- 8.3 InGaAs-Based Material Evaluation.- 8.4 RHET Technology Using InGaAs-Based Materials.- 8.5 Theoretical Analyses of RHET Performance.- 8.6 Summary.- References.- 9. Ballistic Electron Transport in Hot Electron Transistors.- 9.1 Ballistic Transport.- 9.2 Hot Electron Transistors.- 9.3 Hot Electron Injectors.- 9.4 Energy Spectroscopy.- 9.5 Electron Coherent Effects in the THETA Device.- 9.6 Transfer to the L Satellite Valleys.- 9.7 The THETA as a Practical Device.- References.- 10. Quantum Interference Devices.- 10.1 Background.- 10.2 Two-Port Quantum Devices.- 10.3 Multiport Quantum Devices.- Appendix: Aharonov — Bohm Phase-shift in an Electric or Magnetic Field.- References.- Additional References.- 11. Carrier Confinement to One and Zero Degrees of Freedom.- 11.1 Experimental Methods.- 11.2 Discussion of Experimental Results.- 11.3 Conclusions.- References.- 12. Quantum Effects in Quasi-One-Dimensional MOSFETs.- 12.1 Background.- 12.2 MOSFET Length Scales.- 12.3 Special MOSFET Geometries.- 12.4 Strictly 1D Transport.- 12.5 Multichannel Transport (Particle in a Box?).- 12.6 Averaged Quantum Diffusion.- 12.7 Mesoscopic Quantum Diffusion (Universal Conductance Fluctuations).- 12.8 Effect of One Scatterer.- 12.9 Conclusion.- References.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |