|
|
|||
|
||||
OverviewPhysics of Data Science and Machine Learning links fundamental concepts of physics to data science, machine learning, and artificial intelligence for physicists looking to integrate these techniques into their work. This book is written explicitly for physicists, marrying quantum and statistical mechanics with modern data mining, data science, and machine learning. It also explains how to integrate these techniques into the design of experiments, while exploring neural networks and machine learning, building on fundamental concepts of statistical and quantum mechanics. This book is a self-learning tool for physicists looking to learn how to utilize data science and machine learning in their research. It will also be of interest to computer scientists and applied mathematicians, alongside graduate students looking to understand the basic concepts and foundations of data science, machine learning, and artificial intelligence. Although specifically written for physicists, it will also help provide non-physicists with an opportunity to understand the fundamental concepts from a physics perspective to aid in the development of new and innovative machine learning and artificial intelligence tools. Key Features: Introduces the design of experiments and digital twin concepts in simple lay terms for physicists to understand, adopt, and adapt. Free from endless derivations; instead, equations are presented and it is explained strategically why it is imperative to use them and how they will help in the task at hand. Illustrations and simple explanations help readers visualize and absorb the difficult-to-understand concepts. Ijaz A. Rauf is an adjunct professor at the School of Graduate Studies, York University, Toronto, Canada. He is also an associate researcher at Ryerson University, Toronto, Canada and president of the Eminent-Tech Corporation, Bradford, ON, Canada. Full Product DetailsAuthor: Ijaz A. RaufPublisher: Taylor & Francis Ltd Imprint: CRC Press Weight: 0.453kg ISBN: 9781032074016ISBN 10: 1032074019 Pages: 194 Publication Date: 29 November 2021 Audience: General/trade , College/higher education , Professional and scholarly , General , Tertiary & Higher Education Format: Paperback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsChapter 1: Introduction Chapter 2: An Overview of Classical Mechanics Chapter 3: An Overview of Quantum Mechanics Chapter 4: Probabilistic Physics Chapter 5: Design of Experiments and Analyses Chapter 6: Basics of Machine Learning Chapter 7: Prediction, Optimization, and New Knowledge DevelopmentReviewsAuthor InformationIjaz A. Rauf is Adjunct Professor at the School of Graduate Studies, York University, Toronto, Canada. He is also an Associate Researcher at Ryerson University, Toronto, Canada and President of the Eminent-Tech Corporation, Bradford, ON, Canada. Tab Content 6Author Website:Countries AvailableAll regions |