|
|
|||
|
||||
OverviewFull Product DetailsAuthor: Hong MengPublisher: Wiley-VCH Verlag GmbH Imprint: Blackwell Verlag GmbH Dimensions: Width: 17.00cm , Height: 3.00cm , Length: 24.40cm Weight: 1.134kg ISBN: 9783527348718ISBN 10: 3527348719 Pages: 528 Publication Date: 21 April 2021 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: To order Stock availability from the supplier is unknown. We will order it for you and ship this item to you once it is received by us. Table of ContentsPreface xiii About the Author xiv 1 Introduction 1 1.1 General Introduction 1 1.2 The History of Electrochromic Materials 3 1.3 The Key Parameters of Electrochromism 5 1.3.1 Electrochromic Contrast 5 1.3.2 Switching Time 8 1.3.3 Coloration Efficiency 9 1.3.4 Optical Memory 11 1.3.5 Stability 12 1.4 Conclusion 14 References 14 2 Advances in Polymer Electrolytes for Electrochromic Applications 17 2.1 Introduction 17 2.2 Requirements of Polymer Electrolytes in Electrochromic Applications 18 2.3 Types of Polymer Electrolytes 20 2.3.1 Gel Polymer Electrolytes (GPEs) 20 2.3.1.1 PEO-/PEG-Based Electrolytes 21 2.3.1.2 PMMA-Based Polymer Electrolytes 21 2.3.1.3 PVDF-Based Polymer Electrolytes 22 2.3.2 Self-Healing Polymer Electrolytes 24 2.3.3 Cross-Linking Polymer Electrolytes (CPEs) 26 2.3.4 Ceramic Polymer Electrolytes 27 2.3.5 Ionic Liquid Polymer Electrolytes 30 2.3.6 Gelatin-Based Polymer Electrolytes 32 2.4 Conclusion and Future Outlook 33 References 40 3 Electrochromic Small Molecules 49 3.1 Background of Small Molecule Electrochromic 49 3.2 Technology Development of Small Molecule Electrochromic Materials 50 3.3 Violene–Cyanine Hybrids (AIE PL OEC) 50 3.4 Terephthalate Derivatives (Multicolor OEC) 56 3.4.1 Conclusion 63 3.5 Isophthalate Derivatives 64 3.5.1 Conclusion 79 3.6 Methyl Ketone Derivatives 79 3.6.1 Conclusion 84 3.7 Diphenylacetylenes 84 3.8 Fluoran Dye Derivatives 85 3.9 PH-Responsive Molecule Derivatives 92 3.10 TPA Dye Derivatives 95 3.11 Hydrocarbon Derivatives-NIR-OEC 99 3.12 Conclusions and Perspective 101 References 101 4 Viologen OEC 105 4.1 The Introduction of OEC and Viologen 105 4.1.1 General Introduction 105 4.1.2 Research History of Viologen 105 4.1.2.1 First Stage (1930s–1970s) 107 4.1.2.2 Second Stage (1970s–2000s) 107 4.1.2.3 Third Stage (2000s–2010s) 107 4.1.2.4 Fourth Stage (2010s–Present) 108 4.1.3 Electrochromism and Electrochemistry of Viologens and Their Device 109 4.2 Different Structures of Viologen-Based Electrochromic Materials 110 4.2.1 Synthesis of Viologens 110 4.2.1.1 Direct Substitution Reaction 110 4.2.1.2 Zincke Reaction 110 4.2.1.3 Methods for Synthesizing Bipyridine 110 4.2.2 The 1,1 Substituted Viologen 111 4.2.2.1 Simple Alkyl 111 4.2.2.2 Acid Group 111 4.2.2.3 Ester and Nitrogen Heterocycle 112 4.2.2.4 Asymmetric Substitution 113 4.2.3 Conjugate Ring System Expansion 113 4.2.3.1 Thiazolothiazole (TTz) Unit 113 4.2.3.2 Perylenediimide (PDI) Unit 115 4.2.3.3 PBEDOTPh 115 4.2.3.4 Heteroatoms Bridged 115 4.2.3.5 Bithiophene Bridged 118 4.2.4 Viologen-Based Polymer 119 4.2.4.1 Viologen in the Side Chain 120 4.2.4.2 Viologen in the Main Chain 122 4.3 Viologen Electrochromic Device 124 4.3.1 Device Structure 124 4.3.1.1 Five-Layer Classic Structure 124 4.3.1.2 Simple Sandwich Structure 125 4.3.1.3 Cathodic Anode Separation Structure 125 4.3.1.4 Reflective Device Structure 126 4.3.2 Electrolyte 126 4.3.3 Redox Mediator 126 4.3.4 Conductive Medium 128 4.3.5 Problems with Viologen Compound 128 4.3.5.1 Dimerization 128 4.3.5.2 Aggregation and Solubility 131 4.3.5.3 Response Time 131 4.3.5.4 Driving Voltage 131 4.3.5.5 Conclusion 131 4.3.6 Examples of Viologen-Based ECD 132 4.4 Companies Operating in the Field of Viologen Electrochromism 132 4.4.1 Gentex 132 4.4.2 Essilor 134 4.4.3 Haoruo 134 4.5 Conclusion 134 References 135 5 Metallohexacyanates 143 5.1 Background 143 5.2 Technology Development of PB 144 5.3 Crystal Structure 144 5.4 Electrochromic Mechanism 145 5.5 Synthesis 147 5.6 Electrochromic Devices (ECDs) 150 5.7 Nanocomposites 154 5.8 PB Analogs 160 5.9 Multifunctional Applications 170 References 175 6 Electrochromic Conjugated Polymers (ECPs) 183 6.1 Introduction 183 6.1.1 Common Categories and Operation Mechanism 183 6.1.2 Synthetic Methods 186 6.2 Thiophene-Based Conjugated Electrochromic Polymers 190 6.2.1 Introduction 190 6.2.2 Color-Tuning Strategies for Thiophene-Based Polymers 191 6.2.2.1 Steric Effects 192 6.2.2.2 Substituent and Electronic Effects 193 6.2.3 Typical Colored Polymers 195 6.2.3.1 Yellow and Orange 196 6.2.3.2 Red 198 6.2.3.3 Magenta and Purple 199 6.2.3.4 Black 202 6.2.3.5 Multicolored 203 6.2.3.6 Anodically Coloring Polymers 205 6.2.4 Water- or “Green Solvents”-Soluble ECPs 208 6.3 Polypyrroles-Based Conjugated Electrochromic Polymers 216 6.3.1 Introduction 216 6.3.2 Electrochromic Properties of Polypyrroles (PPy) 218 6.3.3 Tuning of Electrochromic Properties of Polypyrrole (PPy) 218 6.3.3.1 Structural Modification 218 6.3.3.2 3- and 3,4-Substituted Polypyrroles 235 6.3.3.3 Donor–Acceptor Approach 236 6.3.3.4 Terarylene Systems 237 6.4 Polycarbazole-Based Conjugated Electrochromic Polymers 237 6.4.1 Introduction 237 6.4.2 Electrochromic Properties of Polycarbazoles (PCARB) 238 6.4.3 Electrochromic Properties of Polycarbazoles Derivatives 238 6.4.3.1 Linear Polycarbazole Derivatives 241 6.4.3.2 Cross-Linked Polycarbazoles Derivatives 249 References 260 7 TA-Based Electrochromic Polyimides and Polyamides 269 7.1 Introduction 269 7.1.1 Aromatic Polyimides and Polyamides 269 7.1.2 Triarylamine-Based Aromatic Polymers 270 7.1.3 Electrochemical and Electrochromic Behaviors of MV Triarylamine Systems 272 7.2 Development of TA-Based Electrochromic Polyimides and Polyamides 272 7.2.1 Side Group Engineering 276 7.2.1.1 Introduction of Protecting Groups 276 7.2.1.2 Introduction of Electroactive Groups to Achieve Color Tuning of EC Material 277 7.2.1.3 Introduction of Side Groups to Achieve Electrofluorochromic Materials 278 7.2.1.4 Introduction of Other Functional Side Groups to Achieve Multiple Functions EC Material 281 7.2.2 Backbone Modulation 283 7.2.2.1 Extending the Polymer Backbone by Introducing More Electroactive Groups 283 7.2.2.2 Introduction of Amide Linkage into Polyimide Backbone 285 7.2.2.3 Introduction of Ether Linkage into PIs/PAs Backbone 285 7.2.2.4 Introduction of Alicyclic Structures into PIs/PAs Backbone 288 7.3 Conclusions 290 References 290 8 Metallo-Supermolecular Polymers 295 8.1 Introduction 295 8.2 Single Metallic System 296 8.2.1 Fe(II)- and Ru(II)-Based Metallo-Supramolecular Polymers 296 8.2.2 CoII-Based Metallo-Supramolecular Polymers 299 8.2.3 ZnII-Based Metallo-Supramolecular Polymers 301 8.2.4 Cu-Based Metallo-Supramolecular Polymers 305 8.2.5 EuIII-Based Metallo-Supramolecular Polymers 308 8.3 Hetero-Metallic System 311 8.4 The Fabrication Method of Metallopolymer Film 314 8.4.1 Layer-by-Layer Self-Assembly and Dip-Coating Methods 314 8.4.2 Electropolymerized Conducting Metallopolymers 315 8.5 Conclusion 323 References 323 9 Metal-Organic Framework (MOF)- and Covalent Organic Framework (COF)-Based Electrochromism (EC) 327 9.1 Introduction 327 9.2 Current Studies in EC MOFs 327 9.2.1 The Organic Linkers in EC MOFs 328 9.2.1.1 NDI-Based Organic Linkers 328 9.2.1.2 Other Organic Linkers 332 9.2.2 The Transport of Electrolyte Ions in EC MOFs 335 9.2.3 Special EC MOFs 338 9.2.3.1 Photochromic and Electrochromic Multi-Responsive MOF 338 9.2.3.2 MOF-Based Double-Sided EC Device and Other Color-Switching Mechanisms 339 9.2.3.3 EC Base on “Guest@MOF” Composite System 340 9.3 Current Studies in EC COFs 341 9.4 Conclusion and Prospect 348 References 348 10 Nanostructure-Based Electrochromism 353 10.1 Introduction 353 10.2 Current Studies of Nanostructure in Electrochromism 354 10.2.1 Non-Electrochromic Active Materials as a Template for ECs 354 10.2.1.1 Photonic Crystals as Templates for ECs 354 10.2.1.2 Plasmonic Structures as Templates for ECs 359 10.2.2 Nanostructured Electrochromic Materials in ECs 365 10.3 Conclusion and Prospect 369 References 369 11 Organic Electroluminochromic Materials 373 11.1 Introduction 373 11.2 Conventional Mechanisms of Electroluminochromism 375 11.2.1 Intrinsic Mechanism 375 11.2.2 Electron Transfer (ET) Mechanism 376 11.2.3 Energy Transfer (EnT) Mechanism 376 11.3 Electroluminochromic Performance Parameters 376 11.3.1 Emission Contrast 376 11.3.2 Switching Time 377 11.3.3 Long-Term Stability/Cycle Life 377 11.4 Classical Materials 378 11.4.1 Small Molecules 378 11.4.1.1 Small Molecular Dyads 378 11.4.1.2 Redox-Active Moiety and Luminophores System 380 11.4.1.3 Electroactive Luminophores 382 11.4.2 Transition Metal Complexes 386 11.4.3 Polymers 387 11.4.3.1 Non-Conjugated Polymers 387 11.4.3.2 Conjugated Polymers 396 11.4.4 Nanocomposite Films 407 11.5 Future Perspectives and Conclusion 408 References 408 12 Organic Photoelectrochromic Devices 415 12.1 Introduction 415 12.2 Structure Design of PECDs 417 12.2.1 Power Supply for PECD 417 12.2.1.1 DSSC-Based PECD 418 12.2.1.2 PSC-Based PECD 423 12.2.1.3 OPV-Based PECD 423 12.2.2 Electrochromic Materials in PECD 425 12.2.2.1 Small Molecule 425 12.2.2.2 Conducting Polymers 427 12.2.2.3 Near-Infrared (NIR) Electrochromic Materials 433 12.2.3 Electrolytes in PECD 435 12.2.4 Substrates in PECD 435 12.3 Future Perspectives and Conclusion 436 References 436 13 Application of OEC Devices 445 13.1 Smart Window 445 13.1.1 The Structure andWorking Mechanism of Smart Windows 445 13.1.2 The Materials for Electrochromic Windows 446 13.1.3 Prospects 450 13.2 Dimmable Rearview Mirror 450 13.3 Sensors 451 13.3.1 Application of Electrochromic Sensors on Food Preservation 451 13.3.2 Application in Bio-Sensing 454 13.4 The Application of Electrochromic Device in Display 460 13.5 Other Applications of OEC 462 References 469 14 Commercialized OEC Materials and Related Analysis of Company Patents 471 14.1 General Introduction 471 14.2 Gentex Corporation 471 14.3 Ricoh Company, Ltd. 475 14.4 Canon Inc. 476 14.5 BOE Technology Group Co., Ltd. and OPPO Guangdong Mobile Communications Co., Ltd. 477 14.6 Other Important Enterprises 481 14.6.1 Ninbo Ninuo Electronic Technology Co., Ltd. 481 14.6.2 Ambilight Inc. 483 14.6.3 Furcifer Inc. 483 14.6.4 Changzhou Spectrum New Material Co. Ltd. 484 14.7 Conclusion 485 References 485 15 Main Challenges for the Commercialization of OEC 491 15.1 Introduction 491 15.2 The Long-Term Stability of OEC Materials 491 15.3 The Mechanical Stability of OEC Devices (Encapsulation Technology) 495 15.4 Large-Area Process Technology: Spray Coating and Roll-to-Roll Processes 498 15.4.1 Inkjet Printing 498 15.4.2 Spray Coating 500 15.4.3 Slot-Die Coating 500 15.4.4 Screen Printing 501 15.5 Conclusions and Perspective 501 References 502 Index 505ReviewsAuthor InformationHong Meng, PhD, works in the School of Advanced Materials in the Shenzhen Graduate School at Peking University in Shenzhen, China. He obtained his doctorate from the University of California, Los Angeles in 2002. Tab Content 6Author Website:Countries AvailableAll regions |