|
|
|||
|
||||
Overview"This text examines the model-theoretic aspects of the theory of valued fields and multi-valued fields. The theory of Prufer rings is discussed from the ""geometric"" point of view. The author shows that by introducing the Zariski topology on families of valuation rings, it is possible to distinguish two important subfamilies of Prufer rings that correspond to Boolean and near Boolean families of valuation rings. Also, algebraic and model-theoretic properties of multi-valued fields with near Boolean families of valuation rings satisfying the local-global principle are studied. It is important that this principle is elementary, that is, that it can be expressed in the language of predicate calculus. The most important results obtained in the book include a criterion for the elementarity of an embedding of a multi-valued field and a criterion for the elementary equivalence for multi-valued fields from the class defined by the additional natural elementary conditions (absolute unramification, maximality and almost continuity of local elementary properties)." Full Product DetailsAuthor: Yuri L. ErshovPublisher: Springer Science+Business Media Imprint: Kluwer Academic/Plenum Publishers Edition: 2001 ed. Dimensions: Width: 15.50cm , Height: 1.80cm , Length: 23.50cm Weight: 1.270kg ISBN: 9780306110689ISBN 10: 0306110687 Pages: 270 Publication Date: 31 August 2001 Audience: College/higher education , Professional and scholarly , Undergraduate , Postgraduate, Research & Scholarly Format: Hardback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents1. Valuation Rings.- 1.1. Valuation Rings and Valuations of Fields.- 1.2. Valuation Rings in Algebraic Extensions.- 1.3. Henselian Valuation Rings.- 1.4. Alebgraic Extensions of Valued Fields.- 1.5. Immediate Extensions.- 1.6. Density.- 1.7. Constructions.- 2. Multi-Valued Fields.- 2.1. Prüfer Rings.- 2.2. The Zariski Topology and the Restriction Mapping.- 2.3. Affine Families of Valuation Rings.- 2.4. Weakly Boolean Families and Boolean Families of Valuation Rings.- 2.5. Near Boolean Families of Valuation Rings.- 2.6. Independence.- 3. Local-Global Properties of Near Boolean Families.- 3.1. Rational Points over Henselian Fields.- 3.2. Arithmetic Local-Global Principle.- 3.3. Equivalent Forms of Property LGA.- 3.4. Preservation of Property LGA under Algebraic Separable Extensions.- 3.5. Geometric Local-Global Principle.- 3.6. Existence of Families with Property LGA.- 4. Model-Theoretic Properties of Multi-Valued Fields.- 4.1. Embedding Theorems.- 4.2. The Robinson Theorem.- 4.3. Valued Fields.- 4.4. Finitely Multi-Valued Fields.- 4.5. Multi-Valued Fields with Boolean Families.- 4.6. Multi-Valued Fields with Near Boolean Families.- Bibliographical and Historical Remarks.- References.Reviews<p>From the reviews: <p> <p> The book is devoted to the investigation of fields with distinguished families of valuation rings. The author has been studying the model-theoretic aspects of the theory of valued fields and multi-valued fields for more than 30 years. Many of the key results included in the book are published for the first time. So, the unique overview of the theory presented in the book has been unavailable previously. (German Pestov, Zentralblatt MATH, Vol. 1073 (24), 2005) From the reviews: The book is devoted to the investigation of fields with distinguished families of valuation rings. The author has been studying the model-theoretic aspects of the theory of valued fields and multi-valued fields for more than 30 years. Many of the key results included in the book are published for the first time. So, the unique overview of the theory presented in the book has been unavailable previously. (German Pestov, Zentralblatt MATH, Vol. 1073 (24), 2005) Author InformationTab Content 6Author Website:Countries AvailableAll regions |