Moments, Monodromy, and Perversity: A Diophantine Perspective

Author:   Nicholas M. Katz
Publisher:   Princeton University Press
Volume:   173
ISBN:  

9780691123301


Pages:   488
Publication Date:   02 October 2005
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $225.00 Quantity:  
Add to Cart

Share |

Moments, Monodromy, and Perversity: A Diophantine Perspective


Add your own review!

Overview

"It is now some thirty years since Deligne first proved his general equidistribution theorem, thus establishing the fundamental result governing the statistical properties of suitably ""pure"" algebro-geometric families of character sums over finite fields (and of their associated L-functions). Roughly speaking, Deligne showed that any such family obeys a ""generalized Sato-Tate law,"" and that figuring out which generalized Sato-Tate law applies to a given family amounts essentially to computing a certain complex semisimple (not necessarily connected) algebraic group, the ""geometric monodromy group"" attached to that family. Up to now, nearly all techniques for determining geometric monodromy groups have relied, at least in part, on local information. In Moments, Monodromy, and Perversity, Nicholas Katz develops new techniques, which are resolutely global in nature. They are based on two vital ingredients, neither of which existed at the time of Deligne's original work on the subject.The first is the theory of perverse sheaves, pioneered by Goresky and MacPherson in the topological setting and then brilliantly transposed to algebraic geometry by Beilinson, Bernstein, Deligne, and Gabber.The second is Larsen's Alternative, which very nearly characterizes classical groups by their fourth moments. These new techniques, which are of great interest in their own right, are first developed and then used to calculate the geometric monodromy groups attached to some quite specific universal families of (L-functions attached to) character sums over finite fields."

Full Product Details

Author:   Nicholas M. Katz
Publisher:   Princeton University Press
Imprint:   Princeton University Press
Volume:   173
Dimensions:   Width: 17.80cm , Height: 2.50cm , Length: 25.40cm
Weight:   0.794kg
ISBN:  

9780691123301


ISBN 10:   0691123306
Pages:   488
Publication Date:   02 October 2005
Audience:   Professional and scholarly ,  College/higher education ,  Professional & Vocational ,  Tertiary & Higher Education
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.
Language:   English

Table of Contents

Introduction 1 Chapter 1: Basic results on perversity and higher moments 9 Chapter 2: How to apply the results of Chapter 2 93 Chapter 3: Additive character sums on An 111 Chapter 4: Additive character sums on more general X 161 Chapter 5: Multiplicative character sums on An 185 Chapter 6: Middle addivitve convolution 221 Appendix A6: Swan-minimal poles 281 Chapter 7: Pullbacks to curves from A1 295 Chapter 8: One variable twists on curves 321 Chapter 9: Weierstrass sheaves as inputs 327 Chapter 10: Weirstrass families 349 Chapter 11: FJTwist families and variants 371 Chapter 12: Uniformity results 407 Chapter 13: Average analytic rank and large N limits 443 References 455 Notation Index 461 Subject Index 467

Reviews

Author Information

Nicholas M. Katz is Professor of Mathematics at Princeton University. He is the author of five previous books in this series: Arithmetic Moduli of Elliptic Curves (with Barry Mazur); Gauss Sums, Kloosterman Sums, and Monodromy Groups; Exponential Sums and Differential Equations; Rigid Local Systems; and Twisted L-Functions and Monodromy.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

lgn

al

Shopping Cart
Your cart is empty
Shopping cart
Mailing List