|
|
|||
|
||||
Overview""Molecular Materials with Specific Interactions: Modeling and Design"" has a very interdisciplinary character and is intended to provide basic information as well as the details of theory and examples of its application to experimentalists and theoreticians interested in modeling molecular properties and putting into practice rational design of new materials. One of the first requirements to initiate the molecular modeling of molecular materials is an accurate and realistic description of the electronic structure, intermolecular interactions and chemical reactions at microscopic and macroscopic scale. Therefore the first four chapters contain an extensive introduction into the latest theories of intermolecular interactions, functional density techniques, microscopic and mezoscopic modeling techniques as well as first-principle molecular dynamics. In the following chapters, techniques bridging microscopic and mezoscopic modeling scales are presented. The authors then illustrate various successful applications of molecular design of new materials, drugs, biocatalysts, etc. before presenting challenging topics in molecular materials design. Full Product DetailsAuthor: W. Andrzej SokalskiPublisher: Springer Imprint: Springer Edition: Softcover reprint of hardcover 1st ed. 2007 Volume: 4 Dimensions: Width: 15.20cm , Height: 3.10cm , Length: 22.90cm Weight: 0.906kg ISBN: 9789048173532ISBN 10: 9048173531 Pages: 597 Publication Date: 11 November 2010 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Out of stock The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Table of ContentsTheory of Intermolecular Forces: an Introductory Account.- Hohenberg-Kohn-Sham Density Functional Theory.- Selected Microscopic and Mezoscopic Modelling Tools and Models – an Overview.- Modeling Chemical Reactions with First-Principle Molecular Dynamics.- Computational Enzymology: Insights into Enzyme Mechanism and Catalysis from Modelling.- Computational Determination of the Relative Free Energy of Binding – Application to Alanine Scanning Mutagenesis.- Substrate-Enzyme Interactions from Modeling and Isotope Effects.- From Inhibitors of Lap to Inhibitors of Pal.- Theoretical Studies of the Transition States Along the Reaction Coordinates of [NIFE] Hydrogenase.- Bacteriorhodopsin Energy Landscape: Current Status.- Dimerization and Oligomerization of Rhodopsin and Other G Protein-Coupled Receptors.- Molecular Dynamics Simulations of Hydrogen Adsorption in Finite and Infinite Bundles ofSingle Walled Carbon Nanotubes.- The Remarkable Capacities of (6,0) Carbon and Carbon/Boron/Nitrogen Model Nanotubes for Transmission of Electronic Effects.- Electronic Properties and Fragmentation Dynamics of Organic Species Deposited on Silicon Surfaces.- Recent Advances in Fullerene Deposition on Semiconductor Surfaces.- A Quest for Efficient Methods of Disintegration of Organophosphorus Compounds: Modeling Adsorption and Decomposition Processes.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |