Modular Units

Author:   D. Kubert ,  S. Lang
Publisher:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of hardcover 1st ed. 1981
Volume:   244
ISBN:  

9781441928139


Pages:   360
Publication Date:   01 December 2010
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $382.80 Quantity:  
Add to Cart

Share |

Modular Units


Add your own review!

Overview

In the present book, we have put together the basic theory of the units and cuspidal divisor class group in the modular function fields, developed over the past few years. Let i) be the upper half plane, and N a positive integer. Let r(N) be the subgroup of SL (Z) consisting of those matrices == 1 mod N. Then r(N)\i) 2 is complex analytic isomorphic to an affine curve YeN), whose compactifi­ cation is called the modular curve X(N). The affine ring of regular functions on yeN) over C is the integral closure of C[j] in the function field of X(N) over C. Here j is the classical modular function. However, for arithmetic applications, one considers the curve as defined over the cyclotomic field Q(JlN) of N-th roots of unity, and one takes the integral closure either of Q[j] or Z[j], depending on how much arithmetic one wants to throw in. The units in these rings consist of those modular functions which have no zeros or poles in the upper half plane. The points of X(N) which lie at infinity,that is which do not correspond to points on the above affine set, are called the cusps, because of the way they look in a fundamental domain in the upper half plane. They generate a subgroup of the divisor class group, which turns out to be finite, and is called the cuspidal divisor class group.

Full Product Details

Author:   D. Kubert ,  S. Lang
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of hardcover 1st ed. 1981
Volume:   244
Dimensions:   Width: 15.50cm , Height: 1.90cm , Length: 23.50cm
Weight:   1.160kg
ISBN:  

9781441928139


ISBN 10:   1441928138
Pages:   360
Publication Date:   01 December 2010
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

1 Distributions on Toroidal Groups.- 2 Modular Units.- 3 Quadratic Relations.- 4 The Siegel Units Are Generators.- 5 The Cuspidal Divisor Class Group on X(N).- 6 The Cuspidal Divisor Class Group on X1 (N).- 7 Modular Units on Tate Curves.- 8 Diophantine Applications.- 9 Unramified Units.- 10 More Units in the Modular Function Field.- 11 Siegel-Robert Units in Arbitrary Class Fields.- 12 Klein Units in Arbitrary Class Fields.- 13 Computation of a Unit Index.- Appendix: The Logarithm of the Siegel Functions.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

lgn

al

Shopping Cart
Your cart is empty
Shopping cart
Mailing List