Modular Functions and Dirichlet Series in Number Theory

Author:   Tom M. Apostol
Publisher:   Springer-Verlag New York Inc.
Edition:   2nd ed. 1990
Volume:   41
ISBN:  

9780387971278


Pages:   207
Publication Date:   01 December 1989
Format:   Hardback
Availability:   Out of print, replaced by POD   Availability explained
We will order this item for you from a manufatured on demand supplier.

Our Price $211.07 Quantity:  
Add to Cart

Share |

Modular Functions and Dirichlet Series in Number Theory


Add your own review!

Overview

Full Product Details

Author:   Tom M. Apostol
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   2nd ed. 1990
Volume:   41
Dimensions:   Width: 15.50cm , Height: 1.40cm , Length: 23.50cm
Weight:   1.090kg
ISBN:  

9780387971278


ISBN 10:   0387971270
Pages:   207
Publication Date:   01 December 1989
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Hardback
Publisher's Status:   Active
Availability:   Out of print, replaced by POD   Availability explained
We will order this item for you from a manufatured on demand supplier.

Table of Contents

1 Elliptic functions.- 1.1 Introduction.- 1.2 Doubly periodic functions.- 1.3 Fundamental pairs of periods.- 1.4 Elliptic functions.- 1.5 Construction of elliptic functions.- 1.6 The Weierstrass p function.- 1.7 The Laurent expansion of p near the origin.- 1.8 Differential equation satisfied by p.- 1.9 The Eisenstein series and the invariants g2 and g3.- 1.10 The numbers e1, e2, e3.- 1.11 The discriminant ?.- 1.12 Klein’s modular function J(?).- 1.13 Invariance of J under unimodular transformations.- 1.14 The Fourier expansions of g2(?) and g3(?).- 1.15 The Fourier expansions of ?(?) and J(?).- Exercises for Chapter 1.- 2 The Modular group and modular functions.- 2.1 Möbius transformations.- 2.2 The modular group ?.- 2.3 Fundamental regions.- 2.4 Modular functions.- 2.5 Special values of J.- 2.6 Modular functions as rational functions of J.- 2.7 Mapping properties of J.- 2.8 Application to the inversion problem for Eisenstein series.- 2.9 Application to Picard’s theorem.- Exercises for Chapter 2.- 3 The Dedekind eta function.- 3.1 Introduction.- 3.2 Siegel’s proof of Theorem 3.1.- 3.3 Infinite product representation for ?(?).- 3.4 The general functional equation for ?(?).- 3.5 Iseki’s transformation formula.- 3.6 Deduction of Dedekind’s functional equation from Iseki’s formula.- 3.7 Properties of Dedekind sums.- 3.8 The reciprocity law for Dedekind sums.- 3.9 Congruence properties of Dedekind sums.- 3.10 The Eisenstein series G2(?).- Exercises for Chapter 3.- 4 Congruences for the coefficients of the modular function j.- 4.1 Introduction.- 4.2 The subgroup ?0(q).- 4.3 Fundamental region of ?0(p).- 4.4 Functions automorphic under the subgroup ?0(p).- 4.5 Construction of functions belonging to ?0(p).- 4.6 The behavior of fp under thegenerators of ?.- 4.7 The function ?(?) = ?(q?)/?(?).- 4.8 The univalent function ?(?).- 4.9 Invariance of ?(?) under transformations of ?0(q).- 4.10 The function jp expressed as a polynomial in ?.- Exercises for Chapter 4.- 5 Rademacher’s series for the partition function.- 5.1 Introduction.- 5.2 The plan of the proof.- 5.3 Dedekind’s functional equation expressed in terms of F.- 5.4 Farey fractions.- 5.5 Ford circles.- 5.6 Rademacher’s path of integration.- 5.7 Rademacher’s convergent series for p(n).- Exercises for Chapter 5.- 6 Modular forms with multiplicative coefficients.- 6.1 Introduction.- 6.2 Modular forms of weight k.- 6.3 The weight formula for zeros of an entire modular form.- 6.4 Representation of entire forms in terms of G4 and G6.- 6.5 The linear space Mk and the subspace Mk,0.- 6.6 Classification of entire forms in terms of their zeros.- 6.7 The Hecke operators Tn.- 6.8 Transformations of order n.- 6.9 Behavior of Tnf under the modular group.- 6.10 Multiplicative property of Hecke operators.- 6.11 Eigenfunctions of Hecke operators.- 6.12 Properties of simultaneous eigenforms.- 6.13 Examples of normalized simultaneous eigenforms.- 6.14 Remarks on existence of simultaneous eigenforms in M2k,0.- 6.15 Estimates for the Fourier coefficients of entire forms.- 6.16 Modular forms and Dirichlet series.- Exercises for Chapter 6.- 7 Kronecker’s theorem with applications.- 7.1 Approximating real numbers by rational numbers.- 7.2 Dirichlet’s approximation theorem.- 7.3 Liouville’s approximation theorem.- 7.4 Kronecker’s approximation theorem: the one-dimensional case.- 7.5 Extension of Kronecker’s theorem to simultaneous approximation.- 7.6 Applications to the Riemann zeta function.- 7.7 Applications to periodic functions.- Exercisesfor Chapter 7.- 8 General Dirichlet series and Bohr’s equivalence theorem.- 8.1 Introduction.- 8.2 The half-plane of convergence of general Dirichlet series.- 8.3 Bases for the sequence of exponents of a Dirichlet series.- 8.4 Bohr matrices.- 8.5 The Bohr function associated with a Dirichlet series.- 8.6 The set of values taken by a Dirichlet series f(s) on a line ? = ?0.- 8.7 Equivalence of general Dirichlet series.- 8.8 Equivalence of ordinary Dirichlet series.- 8.9 Equality of the sets Uf(?0) and Ug(?0) for equivalent Dirichlet series.- 8.10 The set of values taken by a Dirichlet series in a neighborhood of the line ? = ?0.- 8.11 Bohr’s equivalence theorem.- 8.12 Proof of Theorem 8.15.- 8.13 Examples of equivalent Dirichlet series. Applications of Bohr’s theorem to L-series.- 8.14 Applications of Bohr’s theorem to the Riemann zeta function.- Exercises for Chapter 8.- Supplement to Chapter 3.- Index of special symbols.- Index 201.

Reviews

From the reviews of the second edition: Apostol is an excellent writer of mathematics and the topics that are covered in this book are covered thoroughly in a concise, precise manner. ... the writing is characterized by its easy, readable, fluid style. Each chapter is complemented with a nice set of exercises. (Alvaro Lozano-Robledo, The Mathematical Association of America, June, 2011)


From the reviews of the second edition: Apostol is an excellent writer of mathematics and the topics that are covered in this book are covered thoroughly in a concise, precise manner. ... the writing is characterized by its easy, readable, fluid style. Each chapter is complemented with a nice set of exercises. (Alvaro Lozano-Robledo, The Mathematical Association of America, June, 2011)


From the reviews of the second edition: Apostol is an excellent writer of mathematics and the topics that are covered in this book are covered thoroughly in a concise, precise manner. ... the writing is characterized by its easy, readable, fluid style. Each chapter is complemented with a nice set of exercises. (Alvaro Lozano-Robledo, The Mathematical Association of America, June, 2011)


Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

lgn

al

Shopping Cart
Your cart is empty
Shopping cart
Mailing List