Modeling of Electrical Overstress in Integrated Circuits

Author:   Carlos H. Diaz ,  Sung-Mo (Steve) Kang ,  Charvaka Duvvury
Publisher:   Springer
Edition:   1995 ed.
Volume:   289
ISBN:  

9780792395058


Pages:   148
Publication Date:   30 November 1994
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $578.16 Quantity:  
Add to Cart

Share |

Modeling of Electrical Overstress in Integrated Circuits


Add your own review!

Overview

Electrical overstress (EOS) and Electrostatic discharge (ESD) pose one of the most dominant threats to integrated circuits (ICs). These reliability concerns are becoming more serious with the downward scaling of device feature sizes. This text presents a comprehensive analysis of EOS/ESD-related failures in I/O protection devices in integrated circuits. The design of I/O protection circuits has been done in a hit-or-miss way due to the lack of systematic analysis tools and concrete design guidelines. In general, the development of on-chip protection structures is a lengthy expensive iterative process that involves tester design, fabrication, testing and redesign. When the technology is changed, the same process has to be repeated almost entirely. This can be attributed to the lack of efficient CAD tools capable of simulating the device behaviour up to the onset of failure which is a 3-D electrothermal problem. For these reasons, it is important to develop and use an adequate measure of the EOS robustness of integrated circuits in order to address the on-chip EOS protection issue. Fundamental understanding of the physical phenomena leading to device failures under ESD/EOS events is needed for the development of device models and CAD tools that can efficiently describe the device behaviour up to the onset of thermal failure. This text should be suitable for VLSI designers and reliability engineers, particularly those who are working on the development of EOS/ESD analysis tools. CAD engineers working on development of circuit level and device level electrothermal simulators should also benefit from the material covered. This book should also be of interest to researchers and first- and second-year graduate students working in semiconductor devices and IC reliability fields.

Full Product Details

Author:   Carlos H. Diaz ,  Sung-Mo (Steve) Kang ,  Charvaka Duvvury
Publisher:   Springer
Imprint:   Springer
Edition:   1995 ed.
Volume:   289
Dimensions:   Width: 15.50cm , Height: 1.10cm , Length: 23.50cm
Weight:   0.960kg
ISBN:  

9780792395058


ISBN 10:   0792395050
Pages:   148
Publication Date:   30 November 1994
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

1 Electrical Overstress in ICS.- 1.1 Definition of Electrostatic Discharge Phenomena.- 1.2 Impact of ESD on IC Chip Technologies.- 1.3 Protection Strategies for Reducing ESD Effects.- 1.4 ESD Models and Qualification.- 1.5 EOS Models and Qualification.- 1.6 Previous Work on ESD/EOS Device Failure Modeling.- 2 NMOS ESD Protection Devices and Process Related Issues.- 2.1 ESD Phenomena in nMOS Devices.- 2.2 Failure Modes in nMOS.- 2.3 Protection Technique Using nMOS Device Structures.- 2.4 The Impact of Process Technologies on nMOS ESD Behavior.- 2.5 Advance nMOS Device Protection Concepts.- 3 Measuring EOS Robustness in ICS.- 3.1 Statistical Distribution of EOS/ESD-related Failures.- 3.2 Characterization of Bipolar Devices.- 3.3 EOS Characterization of nMOS Devices.- 3.4 Summary.- 4 Eos Thermal Failure Simulation for Integrated Circuits.- 4.1 Nomenclature.- 4.2 ITSIM: A Nonlinear Thermal Failure Simulator for ICs.- 4.3 Simulation Results for Ceramic and Plastic Packages.- 4.4 Summary.- 5 ITSIM: A Nonlinear 2D - 1D Thermal Simulator.- 5.1 Introduction.- 5.2 Running the Program.- 5.3 Input File.- 5.4 An Example.- 6 2D Electrothermal Analysis of Device Failure in Mos Processes.- 6.1 Device Level Electrothermal Simulation.- 6.2 Comparison of Experimental and 2D Electrothermal Results.- 6.3 Summary.- 7 Circuit-Level Electrothermal Simulation.- 7.1 Temperature Effects and Device Models.- 7.2 Simulation of Avalanche Breakdown.- 7.3 Temperature Model for Electrothermal Simulation.- 7.4 iETSIM: An Electrothermal Circuit-Level Simulation Tool.- 7.5 Summary.- 8 IETSIM : An Electrothermal Circuit Simulator.- 8.1 Introduction.- 8.2 Running the Program.- 8.3 Input File: Circuit Description and Format.- 8.4 Low Temperature Thermometer Example.- 9 Summary and Future Research.- 9.1 Summary.- 9.2 Future Research.- About the Authors.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

lgn

al

Shopping Cart
Your cart is empty
Shopping cart
Mailing List