Model Based Learning and Instruction in Science

Author:   John Clement ,  Mary Anne Rea-Ramirez
Publisher:   Springer
Edition:   Softcover reprint of the original 1st ed. 2008
Volume:   2
ISBN:  

9789402413106


Pages:   279
Publication Date:   29 March 2019
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $232.85 Quantity:  
Add to Cart

Share |

Model Based Learning and Instruction in Science


Add your own review!

Overview

This book describes new, model based teaching methods for science instruction. It presents research that describes these new methods in a very diverse group of settings: middle school biology, high school physics, and college chemistry classrooms. Mental models in these areas such as understanding the structure of the lungs or cells, molecular structures and reaction mechanisms in chemistry, or causes of current flow in electricity are notoriously difficult for many students to learn. Yet these lie at the core of conceptual understanding in these areas. The studies focus on a variety of teaching strategies such as discrepant questioning, analogies, animations, model competition, and hands on activities. Five different levels of organization for teaching strategies are described, from those operating over months (design of the sequence of units in a curriculum) to those operating over minutes (teaching tactics for guiding discussion minute by minute).

Full Product Details

Author:   John Clement ,  Mary Anne Rea-Ramirez
Publisher:   Springer
Imprint:   Springer
Edition:   Softcover reprint of the original 1st ed. 2008
Volume:   2
Weight:   0.456kg
ISBN:  

9789402413106


ISBN 10:   9402413103
Pages:   279
Publication Date:   29 March 2019
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Introduction: A 'Hidden World' Of Nonformal Expert Reasoning 1.1 Why Study Nonformal Reasoning? 1.2 The Background From Which I Approached This Work 1.3 Methodology: Qualitative Nature Of The Study 1.4 General Features Of The Descriptive Methodology Used 1.5 General Theoretical Framework 1.6 Section Summaries And Approaches To Reading This Book PART ONE: ANALOGIES, MODELS AND CREATIVE LEARNING IN EXPERTS AND STUDENTS SECTION I: EXPERT REASONING AND LEARNING VIA ANALOGY 2 Major Subprocesses Involved in Spontaneous Analogical Reasoning 2.1 Some Major Issues in Analogical Reasoning 2.2 Method of Study 2.3 Initial Observations from Transcripts 2.4 Major processes used in analogical reasoning 2.5 Conclusion 3 Methods Experts Use to Generate Analogies 3.1 Introduction 3.2 Definitions of Basic Concepts and Observations 3.3 Discussion 4 Methods Experts Use to Evaluate an Analogy Relation 4.1 The Importance of Establishing the Validity of an Analogy Relation 4.2 Examples from Case Studies 4.3 Analogy Evaluation in the Doughnut Problem 4.4 Discussion of Findings and Connections to History of Science 4.5 Summary 5 Expert Methods for Developing an Understanding of the Analogous Case and Transferring Findings 5.1 Evaluating and Developing Understanding of the Analogous Case. 5.2 Transferring Findings 5.3 Summary on Creative Analogy Generation SECTION II: MODEL CONSTRUCTION AND SCIENTIFIC INSIGHT IN EXPERTS 6 Case Study of Model Construction Cycles in Expert Reasoning 6.1 Introduction 6.2 Background Questions from Philosophy of Science 6.3 How Are Theoretical Hypotheses Formed in the Individual Scientist? 6.4 Protocol Evidence on Construction Cycles That Use Analogies 6.5 Summary of Evidence For AModel Construction Cycle as A Non-Inductive Source for Hypotheses 6.6 Major Nonformal Reasoning Patterns in the Preceding Chapters 7 Creativity and Scientific Insight in the Case Study for S2 7.1 Eureka or Accretion? The Presence of Insight in S2’s Protocol 7.2 Creative Mental Processes 7.3 Darwin’s Theory of Natural Selection 7.4 Initial List of Features of Creative Thinking from this Case Study and Remaining Challenges SECTION III: NONFORMAL REASONING IN STUDENTS AND IMPLICATIONS FOR INSTRUCTION 8 Spontaneous Analogies Generated by Students Solving Science Problems 8.1 Use of Analogies by Students 8.2 Conclusion 8.3 Appendix: Examples of Problems and Spontaneous Analogies 9 Case Study of a Student who Counters and Improves his own Misconception by Generating a Chain of Analogies 9.1 Spontaneous Analogies in a Student’s Problem Solution 9.2 Conclusion 10 Using Analogies and Models in Instruction to Deal with Students Preconceptions 10.1 Introduction 10.2 Teaching Strategy 10.3 Teaching Interviews 10.4 Applications to Classroom Teaching 10.5 Conclusion 10.5.2 Explanatory Models vs. Specific Analogous Cases PART TWO: ADVANCED USES OF IMAGERY AND PLAUSIBLE REASONING IN SCIENCE AND MATHEMATICS SECTION IV: IMAGERY AND PHYSICAL INTUITION IN EXPERTS AND STUDENTS 11 Analogy, Extreme Cases, and Spatial Transformations in Mathematical Problem Solving by Experts 11.1 Introduction 11.2 Case Study of Analogical Reasoning in a Mathematics Problem 11.3 Results on the Use of Analogies for Eight Subjects 11.4 Other Creative Non-formal Reasoning Processes 11.5 Discussion 11.6 Conclusion 12 Depictive Gestures and Other Case Study Evidence for Mental Simulation in Experts and Students 12.1 Introduction 12.2

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List