|
|
|||
|
||||
OverviewThis volume describes a research collaboration between IBM Almaden and Stanford University in which a new mass data storage technology was evaluated. This technology is based on the use of heated cantilevers to form submicron indentations on a polycarbonate surface, and piezoresistive cantilevers to read those indentations. The book describes how silicon micromachined cantilevers can be used for high-density topographic data storage on a simple substrate such as polycarbonate. The cantilevers can be made to incorporate resistive heaters (for thermal writing) or piezoresistive deflection sensors (for data readback). The primary audience for the text is industrial and academic workers in the microelectromechanical systems (MEMS) area. It should also be of interest to researchers in the data storage industry who are investigating future storage technologies. Full Product DetailsAuthor: Benjamin W. ChuiPublisher: Springer Imprint: Springer Edition: 1999 ed. Volume: 1 Dimensions: Width: 15.50cm , Height: 1.10cm , Length: 23.50cm Weight: 0.940kg ISBN: 9780792383581ISBN 10: 0792383583 Pages: 148 Publication Date: 31 October 1998 Audience: Professional and scholarly , General/trade , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents1 Introduction.- 1.1 High-density data storage: a survey.- 1.2 Alternative data storage approaches.- 1.3 AFM thermomechanical data storage.- 2 Heater-cantilevers for writing: design, fabrication and basic characterization.- 2.1 Overview.- 2.2 Heater design and fabrication.- 2.3 Thermal writing experiments.- 2.4 Measuring temperature coefficients of resistance.- 2.5 Electrical I-V characteristics.- 2.6 Summary.- 3 Heater-cantilevers for writing: further characterization, modelling and optimization.- 3.1 Overview.- 3.2 Time-domain thermal analysis.- 3.3 Frequency-domain thermal analysis.- 3.4 Heater design optimization.- 3.5 Summary.- 4 Piezoresistive cantilevers for readback.- 4.1 Overview.- 4.2 Piezoresistive cantilever design analysis.- 4.3 Piezoresistive cantilever fabrication.- 4.4 Characterization of piezoresistive cantilevers.- 4.5 Summary.- 5 Dual axis piezoresistive cantilevers: design, fabrication and characterization.- 5.1 Overview.- 5.2 Dual-axis cantilever design.- 5.3 Dual-axis cantilever fabrication.- 5.4 Dual-axis cantilever characterization.- 5.5 Summary.- 6 Dual-axis piezoresistive cantilevers for tracking: applications.- 6.1 Overview.- 6.2 AFM data tracking.- 6.3 Lateral force microscopy.- 6.4 Summary.- 7 Conclusion and future work.- 7.1 Summary of results.- 7.2 Future improvements.- Appendix 1 Heater-cantilever fabrication process.- Appendix 2 Piezoresistive cantilever fabrication process.- Appendix 3 Dual-axis piezoresistive cantilever fabrication process.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |