|
|
|||
|
||||
OverviewSemiconductor technology has developed considerably during the past several decades. The exponential growth in microelectronic processing power has been achieved by a constant scaling down of integrated cir,cuits. Smaller fea ture sizes result in increased functional density, faster speed, and lower costs. One key ingredient of the LSI technology is the development of the lithog raphy and microfabrication. The current minimum feature size is already as small as 0.2 /tm, beyond the limit imposed by the wavelength of visible light and rapidly approaching fundamental limits. The next generation of devices is highly likely to show unexpected properties due to quantum effects and fluctuations. The device which plays an important role in LSIs is MOSFETs (metal oxide-semiconductor field-effect transistors). In MOSFETs an inversion layer is formed at the interface of silicon and its insulating oxide. The inversion layer provides a unique two-dimensional (2D) system in which the electron concentration is controlled almost freely over a very wide range. Physics of such 2D systems was born in the mid-1960s together with the development of MOSFETs. The integer quantum Hall effect was first discovered in this system. Full Product DetailsAuthor: Tsuneya Ando , Yasuhiko Arakawa , Kazuhito Furuya , Susumu KomiyamaPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: Softcover reprint of the original 1st ed. 1998 Dimensions: Width: 15.50cm , Height: 1.50cm , Length: 23.50cm Weight: 0.458kg ISBN: 9783642719783ISBN 10: 3642719783 Pages: 282 Publication Date: 10 December 2011 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand We will order this item for you from a manufactured on demand supplier. Table of Contents1. Introduction — Mesoscopic Systems.- 1.1 Introduction.- 1.2 Length Scales Characterizing Mesoscopic Systems.- 1.3 Landauer’s Formula.- 1.4 Fluctuations and Aharonov—Bohm Effect.- 1.5 Ballistic Electron Transport.- 1.6 Coulomb Blockade.- 2. Transport in Quantum Structures.- 2.1 Tomonaga—Luttinger Liquid in Quantum Wires.- 2.2 Quantum Wires.- 2.3 Magnetophonon Resonance in Quantum Wires.- 2.4 Quantum Dots and Artificial Atoms.- 2.5 Antidot Lattices — Classical and Quantum Chaos.- 2.6 Electric and Magnetic Lateral Superlattices.- 2.7 Terahertz Spectroscopy of Nanostructures.- 2.8 Wannier—Stark Effect in Transport.- 3. Quantum Hall Effect.- 3.1 Crossover from Quantum to Classical Regime.- 3.2 Edge States and Nonlocal Effects.- 3.3 Magnetocapacitance and Edge States.- 4. Electron-Photon Interaction in Nanostructures.- 4.1 Introduction.- 4.2 Theory of Electron-Photon Interaction.- 4.3 Electron-Photon Interaction in Microcavities.- 4.4 Photonic Crystals.- 4.5 Microcavity Surface Emitting Lasers.- 4.6 Toward Lasers of the Next Generation.- 5. Quantum-Effect Devices.- 5.1 Introduction.- 5.2 Electron-Wave Reflection and Resonance Devices.- 5.3 Electron-Wave Coherent Coupling Devices.- 5.4 Electron-Wave Diffraction Devices.- 5.5 Devices Using Ultimate Silicon Technology.- 5.6 Circuit Systems Using Quantum-Effect Devices.- 6. Formation and Characterization of Quantum Structures.- 6.1 Introduction.- 6.2 Quantum Wires and Dots by MOCVD (I).- 6.3 Quantum Wires and Dots by MOCVD (II).- 6.4 Quantum Wires on Vicinal GaAs (110) Surfaces.- 6.5 Tilted T-Shaped and (775)B Quantum Wires.- 6.6 SiGe Quantum Structures.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |