|
|
|||
|
||||
OverviewAn engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics – differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521854030. Full Product DetailsAuthor: Michael Stone (University of Illinois, Urbana-Champaign) , Paul Goldbart (University of Illinois, Urbana-Champaign)Publisher: Cambridge University Press Imprint: Cambridge University Press (Virtual Publishing) ISBN: 9780511627040ISBN 10: 0511627041 Publication Date: 05 June 2012 Audience: Professional and scholarly , Professional & Vocational Format: Undefined Publisher's Status: Active Availability: In stock We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsPreface; 1. Calculus of variations; 2. Function spaces; 3. Linear ordinary differential equations; 4. Linear differential operators; 5. Green functions; 6. Partial differential equations; 7. The mathematics of real waves; 8. Special functions; 9. Integral equations; 10. Vectors and tensors; 11. Differential calculus on manifolds; 12. Integration on manifolds; 13. An introduction to differential topology; 14. Group and group representations; 15. Lie groups; 16. The geometry of fibre bundles; 17. Complex analysis I; 18. Applications of complex variables; 19. Special functions and complex variables; Appendixes; Reference; Index.Reviews'The amount of material in Mathematics for Physics is definitely more than enough for two single-term courses; that provides a potential lecturer considerable flexibility. ... The many features that make the book valuable to students and teachers also represent a substantial step toward making modern mathematics a part of the working arsenal of practising physicists. I strongly recommend it to those who feel the need to upgrade their mathematics repertoire.' Physics Today Author InformationMichael Stone is a Professor in the Department of Physics at the University of Illinois at Urbana-Champaign. He has worked on quantum field theory, superconductivity, the quantum Hall effect and quantum computing. Paul Goldbart is a Professor in the Department of Physics at the University of Illinois at Urbana-Champaign, where he directs the Institute for Condensed Matter Theory. His research ranges widely over the field of condensed matter physics, including soft matter, disordered systems, nanoscience and superconductivity. Tab Content 6Author Website:Countries AvailableAll regions |