Machine Learning: Concepts, Techniques and Applications

Author:   T V Geetha (Anna University, India) ,  S Sendhilkumar (Anna University, India)
Publisher:   Taylor & Francis Ltd
ISBN:  

9781032268286


Pages:   456
Publication Date:   17 May 2023
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $294.00 Quantity:  
Add to Cart

Share |

Machine Learning: Concepts, Techniques and Applications


Add your own review!

Overview

Machine Learning: Concepts, Techniques and Applications starts at basic conceptual level of explaining machine learning and goes on to explain the basis of machine learning algorithms. The mathematical foundations required are outlined along with their associations to machine learning. The book then goes on to describe important machine learning algorithms along with appropriate use cases. This approach enables the readers to explore the applicability of each algorithm by understanding the differences between them. A comprehensive account of various aspects of ethical machine learning has been discussed. An outline of deep learning models is also included. The use cases, self-assessments, exercises, activities, numerical problems, and projects associated with each chapter aims to concretize the understanding. Features Concepts of Machine learning from basics to algorithms to implementation Comparison of Different Machine Learning Algorithms – When to use them & Why – for Application developers and Researchers Machine Learning from an Application Perspective – General & Machine learning for Healthcare, Education, Business, Engineering Applications Ethics of machine learning including Bias, Fairness, Trust, Responsibility Basics of Deep learning, important deep learning models and applications Plenty of objective questions, Use Cases, Activity and Project based Learning Exercises The book aims to make the thinking of applications and problems in terms of machine learning possible for graduate students, researchers and professionals so that they can formulate the problems, prepare data, decide features, select appropriate machine learning algorithms and do appropriate performance evaluation.

Full Product Details

Author:   T V Geetha (Anna University, India) ,  S Sendhilkumar (Anna University, India)
Publisher:   Taylor & Francis Ltd
Imprint:   Chapman & Hall/CRC
Weight:   2.250kg
ISBN:  

9781032268286


ISBN 10:   103226828
Pages:   456
Publication Date:   17 May 2023
Audience:   College/higher education ,  Professional and scholarly ,  Tertiary & Higher Education ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Reviews

Author Information

T V Geetha is a retired Senior Professor of Computer Science and Engineering with over 35 years of teaching experience in the areas of Artificial Intelligence, Machine Learning, Natural Language Processing and Information Retrieval. Her research interests include semantic, personalized and deep web search, semi-supervised learning for Indian languages, application of Indian philosophy to knowledge representation and reasoning, machine learning for adaptive e-learning, and application of machine learning and deep learning to biological literature mining and drug discovery. She is a recipient of the Young Women Scientist Award from the Government of Tamilnadu and Women of Excellence Award from Rotract Club of Chennai. She is a receipt of BSR Faculty Fellowship for Superannuated Faculty from University Grants Commission, Government of India for 2020-2023. S Sendhilkumar is working as Associate Professor in Department of Information Science and Technology, CEG, Anna University with 18 years of teaching experience in the areas of Data Mining, Machine Learning, Data Science and Social Network Analytics. His research interests include personalized information retrieval, Bibliometrics and social network mining. He is recipient of CTS Best Faculty Award for the year 2018 and awarded with Visvesvaraya Young Faculty Research Fellowship by Ministry of Electronics and Information Technology (MeitY), Government of India for 2019-2021.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

lgn

al

Shopping Cart
Your cart is empty
Shopping cart
Mailing List