|
|
|||
|
||||
OverviewThe study of (special cases of) elliptic curves goes back to Diophantos and Fermat, and today it is still one of the liveliest centres of research in number theory. This book, which is addressed to beginning graduate students, introduces basic theory from a contemporary viewpoint but with an eye to the historical background. The central portion deals with curves over the rationals: the Mordell-Weil finite basis theorem, points of finite order (Nagell-Lutz) etc. The treatment is structured by the local-global standpoint and culminates in the description of the Tate-Shafarevich group as the obstruction to a Hasse principle. In an introductory section the Hasse principle for conics is discussed. The book closes with sections on the theory over finite fields (the 'Riemann hypothesis for function fields') and recently developed uses of elliptic curves for factoring large integers. Prerequisites are kept to a minimum; an acquaintance with the fundamentals of Galois theory is assumed, but no knowledge either of algebraic number theory or algebraic geometry is needed. The p-adic numbers are introduced from scratch, as is the little that is needed on Galois cohomology. Many examples and exercises are included for the reader. For those new to elliptic curves, whether they are graduate students or specialists from other fields, this will be a fine introductory text. Full Product DetailsAuthor: J. W. S. Cassels (University of Cambridge)Publisher: Cambridge University Press Imprint: Cambridge University Press (Virtual Publishing) Volume: 24 ISBN: 9781139172530ISBN 10: 1139172530 Publication Date: 05 June 2012 Audience: Professional and scholarly , Professional & Vocational Format: Undefined Publisher's Status: Active Availability: In stock We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviews'... an excellent introduction ... written with humour.' Monatshefte fur Mathematik Author InformationTab Content 6Author Website:Countries AvailableAll regions |