|
|
|||
|
||||
OverviewAn intense charged particle beam can be characterized as an organized charged particle flow for which the effects of beam self-fields are of major importance in describing the evolution of the flow. Research employing such beams is now a rapidly growing field with important applications ranging from the development of high power sources of coherent radiation to inertial confinement fusion. Major programs have now been established at several laboratories in the United States and Great Britain, as well as in the USSR, Japan, and several Eastern and Western European nations. In addition, related research activities are being pursued at the graduate level at several universities in the US and abroad. When the author first entered this field in 1973 there was no single reference text that provided a broad survey of the important topics, yet contained sufficient detail to be of interest to the active researcher. That situation has persisted, and this book is an attempt to fill the void. As such, the text is aimed at the graduate student, or beginning researcher; however, it contains ample information to be a convenient reference source for the advanced worker. Full Product DetailsAuthor: R. B. MillerPublisher: Kluwer Academic Publishers Group Imprint: Kluwer Academic / Plenum Publishers ISBN: 9780306409318ISBN 10: 0306409313 Pages: 362 Publication Date: 01 April 1982 Audience: College/higher education , Professional and scholarly , Undergraduate , Postgraduate, Research & Scholarly Format: Hardback Publisher's Status: Active Availability: Out of stock The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Table of Contents1. Introduction.- 1.1. Background.- 1.2. Pulsed Power Technology.- 1.2.1. Marx Generators.- 1.2.2. Pulse-Forming Lines.- 1.2.3. Switching.- 1.2.4. Vacuum Diodes.- 1.3. Qualitative Behavior of Charged Particle Beams.- 1.3.1. Solenoidal Field Transport in Vacuum.- 1.3.2. Charge and Current Neutralization by a Background Plasma.- 1.4. The Macroscopic Fluid Description.- 2. Intense Electron and Ion Beam Generation.- 2.1. Introduction.- 2.2. Electron Emission Processes.- 2.2.1. Thennionic Emission and Photoemission.- 2.2.2. Field Emission.- 2.2.3. Explosive Electron Emission.- 2.3. Electron Flow in High-Power Diodes.- 2.3.1. The Relativistic Planar Diode.- 2.3.2. Parapotential Flow.- 2.3.3. Foilless Diodes.- 2.4. Ion Flow in High-Power Diodes.- 2.4.1. Bipolar Space-Charge-Limited Flow.- 2.4.2. The Reflex Triode.- 2.4.3. Magnetically Insulated Ion Diodes.- 2.4.4. Time-Dependent Electron and Ion Flow in Pinched Electron Beam Diodes.- 2.5. Summary.- 3. Propagation of Intense Beams in Vacuum.- 3.1. Introduction.- 3.2. General Equations for Laminar Flow Equilibria.- 3.3. Space-Charge-Limiting Current.- 3.3.1. Thin Annular Beam in an Infinitely Long Drift Space.- 3.3.2. Infinite One-Dimensional Drift Space.- 3.3.3. Iterative Procedure for the Limiting Current in a Long Drift Space.- 3.3.4. Upper Bound for the Limiting Current in Arbitrary Geometry.- 3.3.5. Wave Spectrum for a Nonrelativistic Beam in a One-Dimensional Drift Space.- 3.4. Virtual Cathode Formation.- 3.4.1. Classical Static Theory.- 3.4.2. Prediction of Unstable Flow.- 3.4.3. Single Charge Sheet Model.- 3.4.4. Time-Dependent Virtual Cathode Behavior.- 3.5. Laminar Flow Equilibria of Unneutralized Relativistic Electron Beams.- 3.5.1. Relativistic Rigid Rotor Equilibrium.- 3.5.2. Relativistic Hollow Beam Equilibrium.- 3.5.3. General Laminar Flow Beam Equilibria.- 3.6. Electron-Neutralized Transport of Intense Ion Beams in Vacuum.- 3.6.1. Collinear Electron Neutralization.- 3.6.2. Transverse Electron Injection.- 3.7. Electrostatic Stability of Intense Relativistic Electron Beams.- 3.7.1. Stability of the Rigid Rotor Equilibrium.- 3.7.2. Stability of the Hollow Beam Equilibrium (Diocotron Instability).- 3.7.3. An Electron-Electron Two-Stream Instability.- 3.8. Summary.- 4. Propagation of Intense Beams in Plasma.- 4.1. Introduction.- 4.2. Current Neutralization.- 4.3. Macroscopic Beam-Plasma Equilibria.- 4.3.1. Warm Fluid Equilibria with B0 = 0.- 4.3.2. Warm Fluid Equilibria in a Discharge Channel.- 4.3.3. Cold Fluid Equilibria with an Axial Magnetic Field.- 4.4. Macroscopic Beam-Plasma Instabilities.- 4.4.1. Resistive Hose Instability.- 4.4.2. Sausage Instability.- 4.5. Microscopic Instabilities.- 4.5.1. Stability of a Charge-Neutralized Electron Beam (Buneman Instability).- 4.5.2. Electron Beam Stability in a Dense Plasma (Two-Stream and Cyclotron Instabilities).- 4.5.3. Electromagnetic Filamentation (Weibel) Instability.- 4.6. Plasma Heating by Linear Relativistic Electron Beams.- 4.6.1. Return Current Interaction.- 4.6.2. Beam-Electron-Plasma-Electron Streaming Interaction.- 4.7. Summary.- 5. Propagation of Intense Beams through Neutral Gas.- 5.1. Introduction.- 5.2. Beam-Induced Neutral Gas Ionization Processes.- 5.2.1. Electron Impact Ionization.- 5.2.2. Electron Avalanche.- 5.2.3. Ion Ionization.- 5.3. Neutral Gas Transport for Ib/Il Regime.- 5.4.3. High-Pressure Regime.- 5.5. Neutral Gas Transport for Ib > IA.- 5.6. Summary.- 6. High-Power Sources of Coherent Radiation.- 6.1. The Relativistic Microwave Magnetron.- 6.1.1. Preoscillation Phenomena.- 6.1.2. Anode Circuits.- 6.1.3. Interaction of the Electron Space Charge and the rf Fields.- 6.2. The Electron Cyclotron Maser (ECM).- 6.2.1. Physical Mechanism of the Electron Cyclotron Maser.- 6.2.2. Linear Theory of the ECM Mechanism.- 6.2.3. Nonlinear Saturation Mechanisms for the ECM Instability.- 6.3. The Free Electron Laser (FEL).- 6.3.1. Physical Mechanism of the Free Electron Laser.- 6.3.2. Linear Theory of the Free Electron Laser in the Raman Scattering Limit.- 6.3.3. Nonlinear Saturation Mechanism for the Free Electron Laser.- 6.4. Summary.- 7. Collective Ion Acceleration with Intense Relativistic Electron Beams.- 7.1. Introduction.- 7.2. Summary of Results for the Neutral Gas and Vacuum Diode Systems.- 7.2.1. Collective Acceleration in a Neutral Gas-Filled Drift Tube.- 7.2.2. Collective Acceleration in an Evacuated Drift Tube.- 7.3. The Ionization Front Accelerator (IFA).- 7.4. Wave Collective Ion Acceleration Mechanisms.- 7.4.1. The Autoresonant Accelerator (ARA).- 7.4.2. The Converging Guide Accelerator (CGA).- 7.5. Summary.- 8. Particle Beam Fusion Concepts.- 8.1. Introduction.- 8.2. Pellet Implosion Criteria.- 8.2.1. Charged Particle Energy Deposition.- 8.2.2. Pellet Compression.- 8.2.3. Rayleigh-Taylor Instability.- 8.2.4. Target Designs for Charged Particle Beam ICF.- 8.3. Electron Beam Fusion Concepts.- 8.3.1. Electron Beam Fusion in Vacuum Diodes.- 8.3.2. Multiple Electron Beam Overlap Schemes.- 8.4. Ion Beam Fusion Concepts.- 8.4.1. Light Ion Fusion Approaches.- 8.4.2. Heavy Ion Fusion Approaches.- 8.5. Summary.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |