|
|
|||
|
||||
OverviewGas discharge plasma is the most common type of low-temperature plasma, with a large number of practical applications covering almost all areas of modern science and technology. This book is an introduction to the numerical modeling methods for gas discharge plasmas. It is intended to assist and direct graduate students and junior researchers, whose research activity deals with computational plasma physics. Topics covered include the essentials of basic modelling approaches (particle, fluid, and hybrid) for gas discharges, and the implementation of these methods with examples of glow (DC and RF) discharges. Numerical studies of nonlinear dynamics and formation of spatio-temporal patterns in gas discharge systems are also presented. Key Features Focuses solely on gas discharge plasmas Covers basic modelling techniques, including particle, fluid, and hybrid Provides details of applications and implementation for the considered methods Special emphasis is given to the applicability and reliability of different modelling techniques Provides specific examples of numerical simulations of the gas discharge plasmas If you model low pressure (non-thermal) plasmas, this book will provide the fundamental equations that can be used to simulate various aspects of the low-pressure plasma. You will also learn about the physics behind the equations through explanations and graphical plots of results including comparisons between simulations and experimental results. The reader would need a background in plasma physics and some familiarity with Boltzmann’s equation to fully appreciate this book. John J Shea IEEE Electrical Engineering Magazine, May June 2021 Vol. 37 Full Product DetailsAuthor: Ismail Rafatov (Middle East Technical University, Turkey) , Anatoly Kudryavtsev (St. Petersburg State University & Harbin Institute of Technology)Publisher: Institute of Physics Publishing Imprint: Institute of Physics Publishing Dimensions: Width: 17.80cm , Height: 0.80cm , Length: 25.40cm Weight: 0.438kg ISBN: 9780750323581ISBN 10: 0750323582 Pages: 120 Publication Date: 07 December 2020 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsIf you model low pressure (non-thermal) plasmas, this book will provide the fundamental equations that can be used to simulate various aspects of the low-pressure plasma. You will also learn about the physics behind the equations through explanations and graphical plots of results including comparisons between simulations and experimental results. The reader would need a background in plasma physics and some familiarity with Boltzmann’s equation to fully appreciate this book. John J Shea IEEE Electrical Engineering Magazine, May June 2021 Vol. 37 -- John J. Shea * IEEE Electrical Insulation Magazine * If you model low pressure (non-thermal) plasmas, this book will provide the fundamental equations that can be used to simulate various aspects of the low-pressure plasma. You will also learn about the physics behind the equations through explanations and graphical plots of results including comparisons between simulations and experimental results. The reader would need a background in plasma physics and some familiarity with Boltzmann's equation to fully appreciate this book. John J Shea IEEE Electrical Engineering Magazine, May June 2021 Vol. 37 -- John J. Shea * IEEE Electrical Insulation Magazine * If you model low pressure (non-thermal) plasmas, this book will provide the fundamental equations that can be used to simulate various aspects of the low-pressure plasma. You will also learn about the physics behind the equations through explanations and graphical plots of results including comparisons between simulations and experimental results. The reader would need a background in plasma physics and some familiarity with Boltzmann's equation to fully appreciate this book. John J Shea IEEE Electrical Engineering Magazine, May June 2021 Vol. 37 -- John J. Shea * IEEE Electrical Insulation Magazine * Author InformationIsmail Rafatov obtained his PhD at the KRSU (Bishkek, Kirghizia) in 1999. Since 2004 he has been working at the Department of Physics of the Middle East Technical University (Ankara, Turkey), and is currently a Professor within this department. His research interests encompass computational plasma physics, nonlinear dynamics and chaos, and nonequilibrium pattern formation. Anatoly Kudryavtsev received his MS and PhD degrees in physics from the Leningrad State University (currently, Saint Petersburg State University, Russia), in 1976 and 1983, respectively. Since 1982 he has held the positions of junior researcher, senior researcher, and Associate Professor at the Department of Optics of this university. He is an expert in the physics of gas discharge plasma, and has published more than 150 papers and several monographs on the probe technique for plasma diagnostics and the physics of gas discharges. Tab Content 6Author Website:Countries AvailableAll regions |