|
|
|||
|
||||
OverviewIntroduction to AI techniques for Renewable Energy System Artificial Intelligence (AI) techniques play an essential role in modeling, analysis, and prediction of the performance and control of renewable energy. The algorithms used to model, control, or predict performances of the energy systems are complicated, involving differential equations, enormous computing power, and time requirements. Instead of complex rules and mathematical routines, AI techniques can learn critical information patterns within a multidimensional information domain. Design, control, and operation of renewable energy systems require a long-term series of meteorological data such as solar radiation, temperature, or wind data. Such long-term measurements are often non-existent for most of the interest locations or, wherever they are available, they suffer from several shortcomings, like inferior quality of data, and in-sufficient long series. The book focuses on AI techniques to overcome these problems. It summarizes commonly used AI methodologies in renewal energy, with a particular emphasis on neural networks, fuzzy logic, and genetic algorithms. It outlines selected AI applications for renewable energy. In particular, it discusses methods using the AI approach for prediction and modeling of solar radiation, seizing, performances, and controls of the solar photovoltaic (PV) systems. Features Focuses on a significant area of concern to develop a foundation for the implementation of renewable energy system with intelligent techniques Showcases how researchers working on renewable energy systems can correlate their work with intelligent and machine learning approaches Highlights international standards for intelligent renewable energy systems design, reliability, and maintenance Provides insights on solar cell, biofuels, wind, and other renewable energy systems design and characterization, including the equipment for smart energy systems This book, which includes real-life examples, is aimed at undergraduate and graduate students and academicians studying AI techniques used in renewal energy systems. Full Product DetailsAuthor: Suman Lata Tripathi (Lovely Professional University, India) , Mithilesh Kumar Dubey (Lovely Professional University, India) , Vinay Rishiwal (MJP Rohilkhand University, India) , Sanjeevikumar Padmanaban (Aalborg University, Denmark)Publisher: Taylor & Francis Ltd Imprint: CRC Press Weight: 0.739kg ISBN: 9780367610920ISBN 10: 0367610922 Pages: 410 Publication Date: 26 November 2021 Audience: College/higher education , Professional and scholarly , Tertiary & Higher Education , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsAuthor InformationSuman Lata Tripathi is working as a Professor at School of Electronics and Electrical Engineering, Lovely Professional University, India. Mithilesh Kumar Dubey is working as an Associate Professor at School of Computer Science and Engineering, Lovely Professional University, India. Vinay Rishiwal is working as a Professor at Department of Computer Science and Information Technology, Faculty of Engineering and Technology, MJP Rohilkhand University, Bareilly, Uttar Pradesh, India. Sanjeevikumar Padmanaban is working as a faculty member, at Department of Energy Technology, Aalborg University, Esbjerg, Denmark. Tab Content 6Author Website:Countries AvailableAll regions |