Inductively Coupled Resonant Humidity Monitoring Exploiting Irreversible State Changes

Author:   Sebastian Sauer
Publisher:   Books on Demand
ISBN:  

9783741274305


Pages:   206
Publication Date:   30 September 2016
Format:   Paperback
Availability:   In stock   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $179.83 Quantity:  
Add to Cart

Share |

Inductively Coupled Resonant Humidity Monitoring Exploiting Irreversible State Changes


Add your own review!

Overview

Due to the pervasive nature of water, water vapor, and moisture, there is a strong influence on the product quality of a multitude of goods (e.g., food, chemicals, electronics, ammunition, etc.). Humidity as environmental water vapor is therefore of strong interest for the purposes of measurement and control throughout the life cycle of goods not only in regard to their use but also during manufacture, transport, and storage. One of the key requirements of monitoring measurement systems is to determine critical threshold or accumulated dosage exposure conditions. Nowadays, RFID technology is established, and a large number of standardized and non-standardized solutions of differing complexity exist. Sensor-enhanced RFID tags not only provide unique identification information but also additional sensor information. Fulfilling a monitoring task on item level is challenging when there is no continuous supply of electric energy available, a common application constraint in sensor-enhanced RFID applications. Application constraints are impeded due to the low cost requirements on the RFID market. Wireless passive humidity monitoring sensor solutions, in which the exceedance of a humidity threshold leads to a permanent, preferably irreversible change of a sensor parameter are proposed in this study. In the presented solutions, this is either a lasting electric resistance (IREV-R sensor approach) or an electric capacitance change (IREV-C sensor approach). For this purpose a number of physico-chemical phenomena are technically exploited in different sensor arrangements. These are the deliquescence of salts as threshold detection mechanism, transport processes in porous media as well as chemical liquid phase sintering of metal nanoparticles. The sensor principles introduced effectively act as humidity threshold-activated relative humidity dosimeters. For use in combination with RFID tags single use, low-cost sensor solutions are favored. Inkjet print as a representative mass

Full Product Details

Author:   Sebastian Sauer
Publisher:   Books on Demand
Imprint:   Books on Demand
Dimensions:   Width: 14.80cm , Height: 1.20cm , Length: 21.00cm
Weight:   0.277kg
ISBN:  

9783741274305


ISBN 10:   3741274305
Pages:   206
Publication Date:   30 September 2016
Audience:   General/trade ,  General
Format:   Paperback
Publisher's Status:   Active
Availability:   In stock   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

Reviews

Author Information

Sebastian Sauer received his Dr.-Ing. and Dipl.-Ing. degree in Mechatronics in 2009 from the Technische Universität Dresden (TUD). He is working as a scientific assistant at the Institute of Semiconductors and Microsystems of the TUD, and holds a position in industry at company PRODAT. His general interest covers sensors, passive wireless sensors, sensor systems, wireless sensor networks, and the technical exploitation of irreversible state changes.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

lgn

al

Shopping Cart
Your cart is empty
Shopping cart
Mailing List