|
|
|||
|
||||
OverviewThis open access book demonstrates how data quality issues affect all surveys and proposes methods that can be utilised to deal with the observable components of survey error in a statistically sound manner. This book begins by profiling the post-Apartheid period in South Africa's history when the sampling frame and survey methodology for household surveys was undergoing periodic changes due to the changing geopolitical landscape in the country. This book profiles how different components of error had disproportionate magnitudes in different survey years, including coverage error, sampling error, nonresponse error, measurement error, processing error and adjustment error. The parameters of interest concern the earnings distribution, but despite this outcome of interest, the discussion is generalizable to any question in a random sample survey of households or firms. This book then investigates questionnaire design and item nonresponse by building a response propensity modelfor the employee income question in two South African labour market surveys: the October Household Survey (OHS, 1997-1999) and the Labour Force Survey (LFS, 2000-2003). This time period isolates a period of changing questionnaire design for the income question. Finally, this book is concerned with how to employee income data with a mixture of continuous data, bounded response data and nonresponse. A variable with this mixture of data types is called coarse data. Because the income question consists of two parts -- an initial, exact income question and a bounded income follow-up question -- the resulting statistical distribution of employee income is both continuous and discrete. The book shows researchers how to appropriately deal with coarse income data using multiple imputation. The take-home message from this book is that researchers have a responsibility to treat data quality concerns in a statistically sound manner, rather than making adjustments to public-use data in arbitrary ways, often underpinned by undefensible assumptions about an implicit unobservable loss function in the data. The demonstration of how this can be done provides a replicable concept map with applicable methods that can be utilised in any sample survey. Full Product DetailsAuthor: Reza Che DanielsPublisher: Springer Verlag, Singapore Imprint: Springer Verlag, Singapore Edition: 1st ed. 2022 Weight: 0.221kg ISBN: 9789811936418ISBN 10: 9811936412 Pages: 114 Publication Date: 03 July 2022 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand We will order this item for you from a manufactured on demand supplier. Table of ContentsIntroduction.- A Framework for Investigating Micro Data Quality, with Application to South African Labour Market Household Surveys.- Questionnaire Design and Response Propensities for Labour Income Micro Data.- Univariate Multiple Imputation for Coarse Employee Income Data.- Conclusion: How Data Quality Affects our Understanding of the Earnings Distribution.ReviewsAuthor InformationReza Che Daniels is Associate Professor in the School of Economics, University of Cape Town. He was one of the Principal Investigators of the National Income Dynamics Study (NIDS), South Africa's first nationally representative longitudinal household survey. He is also one of the Principal Investigators of the NIDS-Coronavirus Rapid Mobile Survey (NIDS-CRAM), which uses a sub-sample of the NIDS to monitor the impact of COVID-19 in South Africa. Tab Content 6Author Website:Countries AvailableAll regions |