|
|
|||
|
||||
OverviewHigh-Level Power Analysis and Optimization presents a comprehensive description of power analysis and optimization techniques at the higher (architecture and behavior) levels of the design hierarchy, which are often the levels that yield the most power savings. This book describes power estimation and optimization techniques for use during high-level (behavioral synthesis), as well as for designs expressed at the register-transfer or architecture level. High-Level Power Analysis and Optimization surveys the state-of-the-art research on the following topics: power estimation/macromodeling techniques for architecture-level designs, high-level power management techniques, and high-level synthesis optimizations for low power. High-Level Power Analysis and Optimization will be very useful reading for students, researchers, designers, design methodology developers, and EDA tool developers who are interested in low-power VLSI design or high-level design methodologies. Full Product DetailsAuthor: Anand Raghunathan , Niraj K. Jha , Sujit DeyPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: Softcover reprint of the original 1st ed. 1998 Dimensions: Width: 17.80cm , Height: 0.80cm , Length: 25.40cm Weight: 0.389kg ISBN: 9781461374817ISBN 10: 1461374812 Pages: 175 Publication Date: 21 November 2012 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand We will order this item for you from a manufactured on demand supplier. Table of Contents1. Introduction.- 1.1 Low power design.- 1.2 Design abstraction and levels of the design hierarchy.- 1.3 Benefits of high-level power analysis and optimization.- 1.4 Book overview.- 2. Background.- 2.1 Sources of power consumption.- 2.2 Methods for reducing power and energy consumption.- 2.3 High-level design techniques.- 2.4 High-level synthesis application domains.- 3. Architecture-Level Power Estimation.- 3.1 Analytical power models.- 3.2 Characterization based activity and power macromodels.- 3.3 Power and switching activity estimation techniques for control logic.- 3.4 Conclusions.- 4. Power Management.- 4.1 Clock-based power management: Gated and multiple clocks.- 4.2 Pre-computation.- 4.3 Scheduling to enable power management.- 4.4 Operand isolation.- 4.5 Power management through constrained register sharing.- 4.6 Controller-based power management.- 4.7 Conclusions.- 5. High-Level Synthesis For Low Power.- 5.1 Behavioral transformations.- 5.2 Module selection.- 5.3 Resource sharing.- 5.4 Scheduling.- 5.5 Supply voltage vs. switched capacitance trade-offs.- 5.6 Optimizing memory power consumption during high-level synthesis.- 5.7 Reducing glitching power consumption during high-level design.- 5.8 Conclusions.- 6. Conclusions And Future Work.- References.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |