|
|
|||
|
||||
OverviewThe dynamics of realistic Hamiltonian systems has unusual microscopic features that are direct consequences of its fractional space-time structure and its phase space topology. The book deals with the fractality of the chaotic dynamics and kinetics, and also includes material on non-ergodic and non-well-mixing Hamiltonian dynamics. The book does not follow the traditional scheme of most of today's literature on chaos. The intention of the author has been to put together some of the most complex and yet open problems on the general theory of chaotic systems. The importance of the discussed issues and an understanding of their origin should inspire students and researchers to touch upon some of the deepest aspects of nonlinear dynamics.The book considers the basic principles of the Hamiltonian theory of chaos and some applications including for example, the cooling of particles and signals, control and erasing of chaos, polynomial complexity, Maxwell's Demon, and others. It presents a new and realistic image of the origin of dynamical chaos and randomness. An understanding of the origin of randomness in dynamical systems, which cannot be of the same origin as chaos, provides new insights in the diverse fields of physics, biology, chemistry, and engineering. Full Product DetailsAuthor: George M. Zaslavsky (Department of Physics and Courant Institute of Mathematical Sciences, New York University, USA)Publisher: Oxford University Press Imprint: Oxford University Press Dimensions: Width: 15.70cm , Height: 2.30cm , Length: 23.40cm Weight: 0.761kg ISBN: 9780199535484ISBN 10: 0199535485 Pages: 438 Publication Date: 11 September 2008 Audience: Professional and scholarly , Professional and scholarly , Professional & Vocational , Postgraduate, Research & Scholarly Format: Paperback Publisher's Status: Active Availability: To order Stock availability from the supplier is unknown. We will order it for you and ship this item to you once it is received by us. Table of ContentsChaotic Dynamics 1: Hamiltonian dynamics 2: Examples of Hamiltonian dynamics 3: Perturbed dynamics 4: Chaotic dynamics 5: Physical models of chaos 6: Separatrix chaos 7: Chaos and symmetry 8: Beyond the KAM-theory 9: Phase space of chaos Fractality of chaos 10: Fractals and chaos 11: Poincaré recurrences 12: Dynamical traps 13: Fractal time Kinetics 14: General principles of kinetics 15: Lévy processes and lévy flights 16: Fractional kinetic equation (FKE) 17: Renormalization group of kinetics (RGK) 18: Fractional kinetics equation solutions and modifications 19: Pseudochaos Applications 20: Complexity and entropy of dynamics 21: Complexity and entropy functions 22: Chaos and foundation of statistical mechanics 23: Chaotic advection (dynamics of tracers) 24: Advection by point vortices 25: Appendix 1 26: Appendix 2 27: Appendix 3 28: Appendix 4 29: Notes 30: ProblemsReviews<br>UNEDITED UK REVIEW: Review from previous edition The strengths of the book lie in its broad survey of the complexity of Hamiltonian dynamics and its focus on interesting physical examples. The book has many excellent figures and illustrations as well as an extensive bibliography. Each chapter has a modest collection of associated exercises. --William Satzer, Zentralblatt Math<br>UNEDITED UK REVIEW: Zaslavsky examines the new and realistic image of the origins of dynamic chaos and randomness by considering the Hamiltonian theory of chaos and such applications as the cooling of particles and signals, the control and erasing of chaos, polynomial complexity and Maxwell's Demon. --SciTech Book News<br> A very useful introductory textbook to the problems of chaos, both for mathematicians and physicists. --Mathematical Reviews<br> <br>UNEDITED UK REVIEW: Review from previous edition The strengths of the book lie in its broad survey of the complexity of Hamiltonian dynamics and its focus on interesting physical examples. The book has many excellent figures and illustrations as well as an extensive bibliography. Each chapter has a modest collection of associated exercises. --William Satzer, Zentralblatt Math<p><br>UNEDITED UK REVIEW: Zaslavsky examines the new and realistic image of the origins of dynamic chaos and randomness by considering the Hamiltonian theory of chaos and such applications as the cooling of particles and signals, the control and erasing of chaos, polynomial complexity and Maxwell's Demon. --SciTech Book News<p><br> A very useful introductory textbook to the problems of chaos, both for mathematicians and physicists. --Mathematical Reviews<p><br> Zaslavsky examines the new and realistic image of the origins of dynamic chaos and randomness by considering the Hamiltonian theory of chaos and such applications as the cooling of particles and signals, the control and erasing of chaos, polynomial complexity and Maxwell's Demon. * SciTech Book News * Review from previous edition The strengths of the book lie in its broad survey of the complexity of Hamiltonian dynamics and its focus on interesting physical examples. The book has many excellent figures and illustrations as well as an extensive bibliography. Each chapter has a modest collection of associated exercises. * William Satzer, Zentralblatt Math * Author InformationProfessor George M. Zaslavsky Department of Physics and Courant Institute of Mathematical Sciences New York University Tab Content 6Author Website:Countries AvailableAll regions |