|
|
|||
|
||||
OverviewThe aim of this book is to systematize and discuss population genetic studies of freshwater fish in a region that harbors the greatest diversity of species among all inland water ecosystems. This volume explores the genetic evaluation for a number of orders, families and species of Neotropical fishes, and provides an overview on genetic resources and diversity and their relationships with fish domestication, breeding, and food production. Full Product DetailsAuthor: Alexandre W. S. Hilsdorf , Eric M. HallermanPublisher: Springer International Publishing AG Imprint: Springer International Publishing AG Edition: Softcover reprint of the original 1st ed. 2017 Dimensions: Width: 15.50cm , Height: 1.50cm , Length: 23.50cm Weight: 0.454kg ISBN: 9783319857619ISBN 10: 3319857614 Pages: 258 Publication Date: 22 August 2018 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand We will order this item for you from a manufactured on demand supplier. Table of ContentsAcknowledges.- Preface.- Introduction.- 1. Genetic Resources: What are genetic resources and their importance for food production?.- 1.1. About biological diversity.- 1.2. What are biological resources, genetic resources, and genetic heritage?.- 1.3. Genetic resources and food production.- 1.4. Animal genetic resources.- 1.5. Genetic resources of freshwater fishes in the world.- 1.6. Genetic resources for aquaculture species.- 1.7. Biogeography of fishes globally.- 1.8. Biogeography of fishes in the Neotropical region.- 1.9. Fish genetic resources in the Neotropical countries.- 1.10. Threats to FiGR.- 1.10.1. Damming.- 1.10.2. Fish introductions and hybridizations.- 2. Characterization of Genetic Resources.- 2.1. The genetic structure of populations.- 2.2. Population and stock concepts for FiGR management.- 2.3. Genetic variation and its importance for FiGR.- 2.4. Genetic markers used in the characterization of fish populations.- 2.5. Evolution in use of population-based genetic markers studies of Neotropical fishes.- 2.5.1. Allozyme Markers.- 2.5.2. Mitochondrial DNA-based Markers.- 2.5.3. RAPD (Random Amplified Polymorphic DNA).- 2.5.4. Minisatellites and microsatellites.- 2.5.5. Single Nucleotides Polymorphism.- 3. Genetic Resources of Freshwater Neotropical Fishes.- 3.1. Introduction.- 3.2. Biologically defined units for management of aquatic organisms.- 3.3. Genetic evaluation of Neotropical fishes.- 3.4. Summary and Prospects.- 4. Prospective Views and Recommendations.- 4.1. Explore and exploit quantitative variation in native Neotropical species for aquaculture.- 4.2. Programmatic survey population genetic variation of critical species.- 4.2.1. Phylogenetic characterization of all lineages.- 4.2.2. Range-wide characterization of population genetic differentiation.- 4.2.3. Application to management.- 4.3. Recommended future work.- 4.3.1. Landscape genetic assessment of genetic variation.- 4.3.2. Seeking adaptation-related genetic variation.- 4.3.3. Landscape genomics.- 4.3.4. Genetically cognizant hatchery-based fishery supplementation.- About the Authors.- Glossary.- Index.ReviewsAuthor InformationAlexander Wagner Silva Hilsdorf is an Associate Professor in the Biotechnology Unit at the University of Mogi das Cruzes in Brazil. There he established the Laboratory of Aquatic Organism Genetics and Aquaculture, which uses molecular markers to investigate problems in fish breeding, fisheries monitoring, population genetics and conservation. Eric Hallerman is a Professor of Fish Conservation at Virginia Tech University in the United States. His research interests include population genetics of aquatic organisms, aquaculture, and biotechnology. He is a Fellow of the American Fisheries Society. Tab Content 6Author Website:Countries AvailableAll regions |