|
|
|||
|
||||
OverviewOver the course of the last century, the systematic exploration of the relationship between Fourier analysis and other branches of mathematics has lead to important advances in geometry, number theory, and analysis, stimulated in part by Hurwitz’s proof of the isoperimetric inequality using Fourier series. This unified, self-contained book presents both a broad overview of Fourier analysis and convexity, as well as an intricate look at applications in some specific settings; it will be useful to graduate students and researchers in harmonic analysis, convex geometry, functional analysis, number theory, computer science, and combinatorial analysis. A wide audience will benefit from the careful demonstration of how Fourier analysis is used to distill the essence of many mathematical problems in a natural and elegant way. Full Product DetailsAuthor: Luca Brandolini , Leonardo Colzani , Alex Iosevich , Giancarlo TravagliniPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: Softcover reprint of the original 1st ed. 2004 Dimensions: Width: 15.50cm , Height: 1.50cm , Length: 23.50cm Weight: 0.433kg ISBN: 9781461264743ISBN 10: 146126474 Pages: 268 Publication Date: 04 October 2012 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand We will order this item for you from a manufactured on demand supplier. Table of ContentsLattice Point Problems: Crossroads of Number Theory, Probability Theory and Fourier Analysis.- Totally Geodesic Radon Transform of LP-Functions on Real Hyperbolic Space.- Fourier Techniques in the Theory of Irregularities of Point Distribution.- Spectral Structure of Sets of Integers.- 100 Years of Fourier Series and Spherical Harmonics in Convexity.- Fourier Analytic Methods in the Study of Projections and Sections of Convex Bodies.- The Study of Translational Tiling with Fourier Analysis.- Discrete Maximal Functions and Ergodic Theorems Related to Polynomials.- What Is It Possible to Say About an Asymptotic of the Fourier Transform of the Characteristic Function of a Two-dimensional Convex Body with Nonsmooth Boundary?.- SomeRecent Progress on the Restriction Conjecture.- Average Decayof the Fourier Transform.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |