|
|
|||
|
||||
OverviewFull Product DetailsAuthor: Walter NollPublisher: Springer Imprint: Kluwer Academic Publishers Edition: Softcover reprint of the original 1st ed. 1987 Volume: 10 Dimensions: Width: 15.50cm , Height: 2.10cm , Length: 23.50cm Weight: 0.730kg ISBN: 9789024735822ISBN 10: 9024735823 Pages: 394 Publication Date: 30 September 1987 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Out of stock The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Table of Contents0 Basic Mathematics.- 00 Notations.- 01 Sets, Partitions.- 02 Families, Lists, Matrices.- 03 Mappings.- 04 Families of Sets; Families and Sets of Mappings.- 05 Finite Sets.- 06 Basic Algebra.- 07 Summations.- 08 Real Analysis.- 1 Linear Spaces.- 11 Basic Definitions.- 12 Subspaces.- 13 Linear Mappings.- 14 Spaces of Mappings, Product Spaces.- 15 Linear Combinations, Linear Independence, Bases.- 16 Matrices, Elimination of Unknowns.- 17 Dimension.- 18 Lineons.- 19 Projections, Idempotents.- 2 Duality, Bilinearity.- 21 Dual Spaces, Transposition, Annihilators.- 22 The Second Dual Space.- 23 Dual Bases.- 24 Bilinear Mappings.- 25 Tensor Products.- 26 The Trace.- 27 Bilinear Forms and Quadratic Forms.- 3 Flat Spaces.- 31 Actions of Groups.- 32 Flat Spaces and Flats.- 33 Flat Mappings.- 34 Charge Distributions, Barycenters, Mass-Points.- 35 Flat Combinations.- 36 Flat Functions.- 37 Convex Sets.- 38 Half-Spaces.- 4 Inner-Product Spaces, Euclidean Spaces.- 41 Inner-Product Spaces.- 42 Genuine Inner-Product Spaces.- 43 Orthogonal Mappings.- 44 Induced Inner Products.- 45 Euclidean Spaces.- 46 Genuine Euclidean Spaces, Congruences.- 47 Double-Signed Inner-Product Spaces.- 5 Topology.- 51 Cells and Norms.- 52 Bounded Sets, Operator Norms.- 53 Neighborhoods, Open and Closed Sets.- 54 Topology of Convex Sets.- 55 Sequences.- 56 Continuity, Uniform Continuity.- 57 Limits.- 58 Compactness.- 6 Differential Calculus.- 61 Differentiation of Processes.- 62 Small and Confined Mappings.- 63 Gradients, Chain Rule.- 64 Constricted Mappings.- 65 Partial Gradients, Directional Derivatives.- 66 The General Product Rule.- 67 Divergence, Laplacian.- 68 Local Inversion, Implicit Mappings.- 69 Extreme Values, Constraints.- 610 Integral Representations.- 611 Curl, Symmetry of Second Gradients.- 612Lineonic Exponentials.- 7 Coordinate Systems.- 71 Coordinates in Flat Spaces.- 72 Connection Components, Components of Gradients.- 73 Coordinates in Euclidean Spaces.- 74 Special Coordinate Systems.- 8 Spectral Theory.- 81 Disjunct Families, Decompositions.- 82 Spectral Values and Spectral Spaces.- 83 Orthogonal Families of Subspaces.- 84 The Structure of Symmetric Lineons.- 85 Lineonic Extensions, Lineonic Square Roots and Logarithms.- 86 Polar Decomposition.- 87 The Structure of Skew Lineons.- 88 The Structure of Normal and of Orthogonal Lineons.- 89 Complex Spaces, Unitary Spaces.- 810 Complex Spectra.- 9 The Structure of General Lineons.- 91 Elementary Decompositions.- 92 Lineonic Polynomial Functions.- 93 The Structure of Elementary Lineons.- 94 Canonical Matrices.- 95 Similarity, Elementary Divisors.- of Theorem Titles.- of Special Notations.- of Multiple-Letter Symbols.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |