|
|
|||
|
||||
OverviewFull Product DetailsAuthor: Haleh Ardebili (Department of Mechanical Engineering, University of Houston, USA and visiting scholar, Mechanical Engineering and Materials Science Department, Rice University) , Jiawei Zhang (Staff Engineer, Qualcomm, San Diego, CA, USA) , Michael G. Pecht (CALCE (Center for Advanced Life Cycle Engineering), University of Maryland, USA) , James J. Licari (AvanTeco, Whittier, CA, USA)Publisher: William Andrew Publishing Imprint: William Andrew Publishing Edition: 2nd edition Weight: 0.790kg ISBN: 9780128119785ISBN 10: 0128119780 Pages: 508 Publication Date: 11 October 2018 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand We will order this item for you from a manufactured on demand supplier. Table of Contents1. Introduction 2. Plastic Encapsulant Materials 3. Encapsulation Process Technology 4. Characterization of Encapsulant Properties 5. Encapsulation Defects and Failures 6. Defect and Failure Analysis Techniques for Encapsulated Microelectronics 7. Qualification and Quality Assurance 8. Trends and ChallengesReviews"""Microelectronics packaging engineers will find this book to be a useful reference for various material properties. Those wanting to learn about electronics packaging could use this book to learn about packaging fundamentals and state-of-the-art in encapsulation for microelectronics."" --IEEE Electrical Insulation Magazine ""This book describes encapsulants and packaging processes commonly used in the electronic industry. Electronic and microelectronic industry professionals, working in packaging areas will find this book to be a good source for up-to-date information on various process, testing, and quality assurance methods in the microelectronic packaging world."" --IEEE Electrical Insulation Magazine" Microelectronics packaging engineers will find this book to be a useful reference for various material properties. Those wanting to learn about electronics packaging could use this book to learn about packaging fundamentals and state-of-the-art in encapsulation for microelectronics. --IEEE Electrical Insulation Magazine Author InformationDr. Haleh Ardebili has a BS honors degree in Engineering Science and Mechanics from Pennsylvania State University at University Park, MS degree in Mechanical Engineering from Johns Hopkins University and PhD degree in Mechanical Engineering from University of Maryland at College Park. She has three years of industry experience as research scientist at General Electric Global Research Center at Niskayuna, New York. She is a recipient of GE Invention Fulcrum of Progress Award. She has several years of experience teaching engineering courses at University of Houston. In Sep 2010, she joined as Assistant Professor in the Mechanical Engineering Department at University of Houston. Her research work is mainly focused on nanomaterials for Energy Storage and Electronics. Jiawei Zhang has 10 years of experience working in the development and implementation of advanced packages. He is currently Staff Engineer at Qualcomm, San Diego. Previously, he served as Development Senior Staff Engineer at Broadcom Corporation responsible for IC package co-design flow (Die/Package/System). He is experienced in advanced package, FCBGA, MCM, and SiP. He has published over 30 external papers, including two which won best Conference Paper Awards (2012 IMAPS and 2014 SMTAI) He has been honored with one Broadcom Corporation Outstanding Technical Achievement Awards for design flow. He also served on the IWLPC Technical Committee from 2013 to 2015 and as the session Chair in 2013. He is the founder and director of CALCE (Center for Advanced Life Cycle Engineering) at the University of Maryland, which is funded by over 150 of the world’s leading electronics companies at more than US$6M/year. He is a Professional Engineer, an IEEE Fellow, an ASME Fellow, an SAE Fellow, and an IMAPS Fellow. He is currently serving as editor-in-chief of Circuit World. He served as editor-in-chief of IEEE Access for 6 years, as editor-in-chief of IEEE Transactions on Reliability for 9 years, and as editor-in-chief of Microelectronics Reliability for 16 years. He has also served on three U.S. National Academy of Science studies, two U.S. Congressional investigations in automotive safety, and as an expert to the U.S. FDA. He is also a Chair Professor. He consults for 22 major international electronics companies, providing expertise in strategic planning, design, test, prognostics, IP and risk assessment of electronic products and systems. has his own consulting firm, AvanTeco, specializing in materials and processes for electronics. He holds a BS in Chemistry from Fordham University and a PhD in Chemistry from Princeton University, where he was a DuPont Senior Fellow. His areas of expertise include materials and processes for electronic applications, primarily for high reliability systems, hybrid microcircuits, printed wiring circuits, and other interconnect packaging technologies. He is an expert on polymeric materials including adhesives, coatings, encapsulants, insulation, reliability based on failure modes and mechanisms. Dr. Licari has had a forty-year career dedicated to the study and advancement of microelectronic materials and processes. Notable achievements throughout this career include conducting the first studies on the reliability and use of die-attach adhesives for microcircuits, which he did in the mid-1970s through the early 1980s, making industry and the government aware of the degrading effects of trace amounts of ionic contaminants in epoxy resins. He conducted early exploratory development on the use of non-noble metal (Cu) thick-film conductor pastes for thick-film ceramic circuits. He carried out the first studies on the use of Parylene as a dielectric and passivation coating for MOS devices and as a particle immobilizer for hybrid microcircuits. He developed the first photo-definable thick-film conductor and resistor pastes that were the forerunners of DuPont’s Fodel process, for which he received a patent was granted in England. And he developed the first photocurable epoxy coating using cationic photoinitiation by employing a diazonium salt as the catalytic agent (U.S. 3205157) . The work was referenced as pioneering work in a review article by J.V. Crivello “The Discovery ad Development of Onium Salt Cationic Photoinitiators, J. Polymer Chemistry (1999) Tab Content 6Author Website:Countries AvailableAll regions |