|
|
|||
|
||||
OverviewDynamic power management is a design methodology aiming at controlling performance and power levels of digital circuits and systems, with the goal of extending the autonomous operation time of battery-powered systems, providing graceful performance degradation when supply energy is limited, and adapting power dissipation to satisfy environmental constraints. This text addresses design techniques and computer-aided design solutions for power management. Different approaches are presented and organized in an order related to their applicability to control-units, macro-blocks, digital circuits and electronic systems, respectively. All approaches are based on the principle of exploiting idleness of circuits, systems, or portions thereof. They involve both the detection of idleness conditions and the freezing of power-consuming activities in the idle components. The book also describes some approaches to system-level power management, including Microsoft's OnNow architecture and the ""Advanced Configuration and Power Management"" standard proposed by Intel, Microsoft and Toshiba. These approaches migrate power management to the software layer running on hardware platforms, thus providing a flexible and self-configurable solution to adapting the power/performance tradeoff to the needs of mobile (and fixed) computing and communication. It should be of interest to researchers and developers of computer-aided design tools for integrated circuits and systems, as well as to system designers. Full Product DetailsAuthor: Luca Benini , Giovanni DeMicheliPublisher: Springer Imprint: Springer Edition: 1998 ed. Dimensions: Width: 15.50cm , Height: 1.50cm , Length: 23.50cm Weight: 1.180kg ISBN: 9780792380863ISBN 10: 079238086 Pages: 231 Publication Date: 30 November 1997 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents1. Introduction.- 1.1 Motivation.- 1.2 Sources of power consumption.- 1.3 Design techniques for low power.- 1.4 CAD techniques for low power.- 1.5 Power management.- 2. Background.- 2.1 Introduction.- 2.2 Boolean algebra and finite-state machines.- 2.3 Implicit representation of discrete functions.- 2.4 Markov analysis of finite-state machines.- 3. Fundamental Concepts.- 3.1 Introduction.- 3.2 Fundamentals.- 3.3 Power management circuitry.- 3.4 Conclusion.- 4. Power Management for Control Units.- 4.1 Introduction.- 4.2 Top-down synthesis.- 4.3 Top-down decomposition.- 4.4 Conclusion.- 5. Power Management for Functional Units.- 5.1 Introduction.- 5.2 Clock distribution design.- 5.3 Logic-level techniques.- 5.4 RTL techniques.- 5.5 Behavioral-level techniques.- 5.6 Conclusion.- 6. Power Management for Systems.- 6.1 Introduction.- 6.2 Operating system-based power management.- 6.3 Advanced configuration and power management.- 6.4 Modeling power management.- 6.5 The policy optimization problem 205 6.5.1 Disk power management.- 6.6 Conclusion.- 7. Conclusion.- 7.1 Summary.- 7.2 Prospects.- References.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |